{"title":"Human Activity Recognition: A review","authors":"João Gonçalo Pereira, Joaquim Gonçalves","doi":"10.1109/ISDFS55398.2022.9800781","DOIUrl":null,"url":null,"abstract":"Human activity recognition (HAR) is important in people’s daily life, helping in both human-to-human interaction and interpersonal relations. In HAR, many studies are presented to show the best data and the best methods in order to predict activities with the most accuracy possible. These studies have different approaches to the problems that HAR present when the real-time is important. In this paper we aim to present some of the methods that exist as well as some of the existing dataset’s and understand the different techniques used. The results show that the CNN’s algorithms has better performance than the others, however more work need to be developed namely in production of adequate dataset’s for training","PeriodicalId":114335,"journal":{"name":"2022 10th International Symposium on Digital Forensics and Security (ISDFS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Symposium on Digital Forensics and Security (ISDFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDFS55398.2022.9800781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Human activity recognition (HAR) is important in people’s daily life, helping in both human-to-human interaction and interpersonal relations. In HAR, many studies are presented to show the best data and the best methods in order to predict activities with the most accuracy possible. These studies have different approaches to the problems that HAR present when the real-time is important. In this paper we aim to present some of the methods that exist as well as some of the existing dataset’s and understand the different techniques used. The results show that the CNN’s algorithms has better performance than the others, however more work need to be developed namely in production of adequate dataset’s for training