Energy allocation for parameter estimation in block CS-based distributed MIMO systems

A. Abtahi, M. Modarres-Hashemi, F. Marvasti, F. Tabataba
{"title":"Energy allocation for parameter estimation in block CS-based distributed MIMO systems","authors":"A. Abtahi, M. Modarres-Hashemi, F. Marvasti, F. Tabataba","doi":"10.1109/SAMPTA.2015.7148946","DOIUrl":null,"url":null,"abstract":"Exploiting Compressive Sensing (CS) in MIMO radars, we can remove the need of the high rate A/D converters and send much less samples to the fusion center. In distributed MIMO radars, the received signal can be modeled as a block sparse signal in a basis. Thus, block CS methods can be used instead of classical CS ones to achieve more accurate target parameter estimation. In this paper a new method of energy allocation to the transmitters is proposed to improve the performance of the block CS-based distributed MIMO radars. This method is based on the minimization of an upper bound of the sensing matrix block-coherence. Simulation results show a significant increase in the accuracy of multiple targets parameter estimation.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Exploiting Compressive Sensing (CS) in MIMO radars, we can remove the need of the high rate A/D converters and send much less samples to the fusion center. In distributed MIMO radars, the received signal can be modeled as a block sparse signal in a basis. Thus, block CS methods can be used instead of classical CS ones to achieve more accurate target parameter estimation. In this paper a new method of energy allocation to the transmitters is proposed to improve the performance of the block CS-based distributed MIMO radars. This method is based on the minimization of an upper bound of the sensing matrix block-coherence. Simulation results show a significant increase in the accuracy of multiple targets parameter estimation.
基于块cs的分布式MIMO系统参数估计的能量分配
利用MIMO雷达中的压缩感知(CS)技术,可以消除对高速率A/D转换器的需求,并大大减少发送到融合中心的采样量。在分布式MIMO雷达中,接收到的信号可以被建模为一个基的块稀疏信号。因此,可以使用块CS方法代替经典CS方法来实现更精确的目标参数估计。本文提出了一种新的发射机能量分配方法,以提高基于分块cs的分布式MIMO雷达的性能。该方法基于传感矩阵块相干性上界的最小化。仿真结果表明,该方法显著提高了多目标参数估计的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信