Radar fall motion detection using deep learning

B. Jokanović, M. Amin, F. Ahmad
{"title":"Radar fall motion detection using deep learning","authors":"B. Jokanović, M. Amin, F. Ahmad","doi":"10.1109/RADAR.2016.7485147","DOIUrl":null,"url":null,"abstract":"Radar has a great potential to be one of the leading technologies to perform in-home monitoring of elderly. Radar signal returns corresponding to human gross-motor activities are nonstationary in nature. As such, time-frequency (TF) analysis plays a fundamental role in revealing constant and higher order velocity components of various parts of the human body under motion which are important for motion discrimination. In this paper, we consider radar for fall detection using TF-based deep learning approach. The proposed approach learns and captures the intricate properties of the TF signatures without human intervention and feeds the underlying features to the classifier. Experimental data is used to demonstrate the effectiveness of the proposed fall detection deep learning approach in comparison with the principal component analysis method and techniques incorporating manual selections of a few dominant features.","PeriodicalId":185932,"journal":{"name":"2016 IEEE Radar Conference (RadarConf)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"133","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Radar Conference (RadarConf)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.7485147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 133

Abstract

Radar has a great potential to be one of the leading technologies to perform in-home monitoring of elderly. Radar signal returns corresponding to human gross-motor activities are nonstationary in nature. As such, time-frequency (TF) analysis plays a fundamental role in revealing constant and higher order velocity components of various parts of the human body under motion which are important for motion discrimination. In this paper, we consider radar for fall detection using TF-based deep learning approach. The proposed approach learns and captures the intricate properties of the TF signatures without human intervention and feeds the underlying features to the classifier. Experimental data is used to demonstrate the effectiveness of the proposed fall detection deep learning approach in comparison with the principal component analysis method and techniques incorporating manual selections of a few dominant features.
使用深度学习的雷达坠落运动检测
雷达有很大潜力成为老年人居家监护的主导技术之一。与人类大运动活动相对应的雷达信号返回在本质上是非平稳的。因此,时频分析对于揭示运动中人体各部位的恒定和高阶速度分量起着重要的作用,对运动判别具有重要意义。在本文中,我们考虑使用基于tf的深度学习方法进行雷达跌倒检测。所提出的方法在没有人工干预的情况下学习和捕获TF签名的复杂属性,并将底层特征提供给分类器。与主成分分析方法和人工选择几个主要特征的技术相比,实验数据证明了所提出的跌倒检测深度学习方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信