Rectangular Isotropic Kirchhoff-Love Plate on an Elastic Foundation under the Action of Unsteady Elastic Diffusion Perturbations

A. Zemskov, D. Tarlakovskii
{"title":"Rectangular Isotropic Kirchhoff-Love Plate on an Elastic Foundation under the Action of Unsteady Elastic Diffusion Perturbations","authors":"A. Zemskov, D. Tarlakovskii","doi":"10.23967/WCCM-ECCOMAS.2020.286","DOIUrl":null,"url":null,"abstract":". We study unsteady elastic diffusion vibrations of a freely supported rectangular isotropic Kirchhoff-Love plate on an elastic foundation, which is under the action of a distributed transverse load. A model that describes coupled elastic diffusion processes in multicomponent continuum is used for the mathematical problem formulation. The longitudinal and transverse vibrations equations of a rectangular isotropic Kirchhoff-Love plate with diffusion were obtained from the model using the d’Alembert variational principle. The problem solution of unsteady elastic diffusion plate vibrations is sought in integral form. The bulk Green’s functions are the kernels of the integral representations. To find the Green’s functions, we used the Laplace transform in time and the expansion into double trigonometric Fourier series in spatial coordinates. Green’s functions in the image domain are represented in the form of rational functions depends on the Laplace transform parameter. The transition to the original domain is done analytically through residues and tables of operational calculus. The bulk Green’s functions analytical expressions are obtained. and concentration increments on time and coordinates.","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th WCCM-ECCOMAS Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. We study unsteady elastic diffusion vibrations of a freely supported rectangular isotropic Kirchhoff-Love plate on an elastic foundation, which is under the action of a distributed transverse load. A model that describes coupled elastic diffusion processes in multicomponent continuum is used for the mathematical problem formulation. The longitudinal and transverse vibrations equations of a rectangular isotropic Kirchhoff-Love plate with diffusion were obtained from the model using the d’Alembert variational principle. The problem solution of unsteady elastic diffusion plate vibrations is sought in integral form. The bulk Green’s functions are the kernels of the integral representations. To find the Green’s functions, we used the Laplace transform in time and the expansion into double trigonometric Fourier series in spatial coordinates. Green’s functions in the image domain are represented in the form of rational functions depends on the Laplace transform parameter. The transition to the original domain is done analytically through residues and tables of operational calculus. The bulk Green’s functions analytical expressions are obtained. and concentration increments on time and coordinates.
非定常弹性扩散扰动作用下弹性地基上的矩形各向同性Kirchhoff-Love板
. 研究了弹性基础上自由支承的矩形各向同性Kirchhoff-Love板在横向分布荷载作用下的非定常弹性扩散振动。用一个描述多分量连续介质中耦合弹性扩散过程的模型来表述数学问题。利用d 'Alembert变分原理,得到了具有扩散的矩形各向同性Kirchhoff-Love板的纵向和横向振动方程。采用积分形式寻求非定常弹性扩散板振动问题的解。大块格林函数是积分表示的核。为了找到格林函数,我们使用了时间上的拉普拉斯变换和空间坐标上的二重三角傅立叶级数展开。图像域的格林函数以依赖于拉普拉斯变换参数的有理函数的形式表示。转换到原始区域是通过残数和运算演算表解析完成的。得到了本体格林函数的解析表达式。浓度随时间和坐标增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信