An Adaptive Fuzzy Classifier Approach to Edge Detection in Latent Fingerprint Images

J. Rochac, L. Liang, Byunggu Yu, Zhao Lu
{"title":"An Adaptive Fuzzy Classifier Approach to Edge Detection in Latent Fingerprint Images","authors":"J. Rochac, L. Liang, Byunggu Yu, Zhao Lu","doi":"10.1109/ICTAI.2010.32","DOIUrl":null,"url":null,"abstract":"This paper proposes an Adaptive Fuzzy Classifier Approach (AFCA) to local edge detection in order to address the challenges of detecting latent fingerprint in severely degraded images. The proposed approach adapts classifier parameters to different parts of input images using the concept of reference neighborhood. Three variants of AFCAs, namely K-means-clustering AFCA, Entropy-based AFCA, and Statistical AFCA, were developed. Experiments were conducted both on synthetic images and on real fingerprint images to compare these AFCAs and Canny edge detection. The presented results show that Statistical AFCA is the best performer with latent images.","PeriodicalId":141778,"journal":{"name":"2010 22nd IEEE International Conference on Tools with Artificial Intelligence","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 22nd IEEE International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2010.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes an Adaptive Fuzzy Classifier Approach (AFCA) to local edge detection in order to address the challenges of detecting latent fingerprint in severely degraded images. The proposed approach adapts classifier parameters to different parts of input images using the concept of reference neighborhood. Three variants of AFCAs, namely K-means-clustering AFCA, Entropy-based AFCA, and Statistical AFCA, were developed. Experiments were conducted both on synthetic images and on real fingerprint images to compare these AFCAs and Canny edge detection. The presented results show that Statistical AFCA is the best performer with latent images.
一种基于模糊自适应分类器的潜在指纹图像边缘检测方法
针对严重退化图像中潜在指纹的检测问题,提出了一种自适应模糊分类器(AFCA)局部边缘检测方法。该方法利用参考邻域的概念对输入图像的不同部分进行分类器参数的调整。开发了三种AFCA变体,即k均值聚类AFCA,基于熵的AFCA和统计AFCA。在合成指纹图像和真实指纹图像上进行了实验,比较了这些afca和Canny边缘检测方法。结果表明,统计AFCA对潜在图像的识别效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信