Optical leaf parameter estimation based on directional characteristics of leaf-scale hyperspectral images

K. Uto, Y. Kosugi, G. Saito
{"title":"Optical leaf parameter estimation based on directional characteristics of leaf-scale hyperspectral images","authors":"K. Uto, Y. Kosugi, G. Saito","doi":"10.1109/IGARSS.2016.7730804","DOIUrl":null,"url":null,"abstract":"With the advent of UAVs and lightweight hyperspectral imagers, leaf-scale hyperspectral images of agricultural fields are available by low-altitude observation. Although leaf-scale hyperspectral images eliminate the effect of volume scattering and spectral mixing, the hyperspectral profile is affected by the surface shape of the leaf, i.e., shade and shadow. Because diffuse reflection of leaves has directional characteristics, the normalized vectors of the diffuse reflection are distributed around a point on a unit hypersphere. The center of the diffuse reflection is equivalent to the Lambert coefficients of the leaves. In this paper, we propose a method in which Lambert coefficients are estimated by investigating directional characteristics of leaf-scale hyperspectral images based on von Mises-Fisher distribution (vMF).","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7730804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the advent of UAVs and lightweight hyperspectral imagers, leaf-scale hyperspectral images of agricultural fields are available by low-altitude observation. Although leaf-scale hyperspectral images eliminate the effect of volume scattering and spectral mixing, the hyperspectral profile is affected by the surface shape of the leaf, i.e., shade and shadow. Because diffuse reflection of leaves has directional characteristics, the normalized vectors of the diffuse reflection are distributed around a point on a unit hypersphere. The center of the diffuse reflection is equivalent to the Lambert coefficients of the leaves. In this paper, we propose a method in which Lambert coefficients are estimated by investigating directional characteristics of leaf-scale hyperspectral images based on von Mises-Fisher distribution (vMF).
基于叶片尺度高光谱图像方向特征的叶片光学参数估计
随着无人机和轻型高光谱成像仪的出现,通过低空观测可以获得农田叶片尺度的高光谱图像。虽然叶片尺度的高光谱图像消除了体积散射和光谱混合的影响,但高光谱轮廓受到叶片表面形状的影响,即阴影和阴影。由于叶片的漫反射具有方向性,所以漫反射的归一化向量分布在单位超球上的一点周围。漫反射的中心等于叶片的朗伯系数。本文提出了一种基于von Mises-Fisher分布(vMF)的叶片尺度高光谱图像方向特征估计兰伯特系数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信