The MSIIP system for dialog state tracking challenge 5

Ying Su, Miao Li, Ji Wu
{"title":"The MSIIP system for dialog state tracking challenge 5","authors":"Ying Su, Miao Li, Ji Wu","doi":"10.1109/SLT.2016.7846313","DOIUrl":null,"url":null,"abstract":"We present our work in Dialog State Tracking Challenge 5, the main task of which is to track dialog state on human-human conversations cross language. Firstly a probabilistic enhanced framework is used to represent sub-dialog, which consists of three parts, the input model for extracting features, the enhanced model for updating dialog state and the output model to give the tracking frame. Meanwhile, parallel language systems are proposed to overcome inaccuracy caused by machine translation for cross language testing. We also introduce a new iterative alignment method extended from our work in DSTC4. Furthermore, a slot-based score averaging method is introduced to build an ensemble by combining different trackers. Results of our DSTC5 system show that our method significantly improves tracking performance compared with baseline method.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present our work in Dialog State Tracking Challenge 5, the main task of which is to track dialog state on human-human conversations cross language. Firstly a probabilistic enhanced framework is used to represent sub-dialog, which consists of three parts, the input model for extracting features, the enhanced model for updating dialog state and the output model to give the tracking frame. Meanwhile, parallel language systems are proposed to overcome inaccuracy caused by machine translation for cross language testing. We also introduce a new iterative alignment method extended from our work in DSTC4. Furthermore, a slot-based score averaging method is introduced to build an ensemble by combining different trackers. Results of our DSTC5 system show that our method significantly improves tracking performance compared with baseline method.
MSIIP系统对对话状态跟踪的挑战5
我们在对话状态跟踪挑战5中展示了我们的工作,其主要任务是跟踪人与人之间跨语言对话的对话状态。首先采用概率增强框架表示子对话框,该框架由三部分组成:用于提取特征的输入模型、用于更新对话框状态的增强模型和用于给出跟踪帧的输出模型。同时,为了克服机器翻译在跨语言测试中造成的误差,提出了并行语言系统。我们还介绍了一种新的迭代对齐方法,该方法是从我们在DSTC4中的工作扩展而来的。在此基础上,引入了一种基于时隙的平均分方法,将不同的跟踪器组合在一起构建一个整体。DSTC5系统的实验结果表明,与基线方法相比,我们的方法显著提高了跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信