Mining Mid-Level Features for Action Recognition Based on Effective Skeleton Representation

Pichao Wang, W. Li, P. Ogunbona, Zhimin Gao, Hanling Zhang
{"title":"Mining Mid-Level Features for Action Recognition Based on Effective Skeleton Representation","authors":"Pichao Wang, W. Li, P. Ogunbona, Zhimin Gao, Hanling Zhang","doi":"10.1109/DICTA.2014.7008115","DOIUrl":null,"url":null,"abstract":"Recently, mid-level features have shown promising performance in computer vision. Mid-level features learned by incorporating class-level information are potentially more discriminative than traditional low-level local features. In this paper, an effective method is proposed to extract mid-level features from Kinect skeletons for 3D human action recognition. Firstly, the orientations of limbs connected by two skeleton joints are computed and each orientation is encoded into one of the 27 states indicating the spatial relationship of the joints. Secondly, limbs are combined into parts and the limb's states are mapped into part states. Finally, frequent pattern mining is employed to mine the most frequent and relevant (discriminative, representative and non-redundant) states of parts in continuous several frames. These parts are referred to as Frequent Local Parts or FLPs. The FLPs allow us to build powerful bag-of-FLP-based action representation. This new representation yields state-of-the-art results on MSR DailyActivity3D and MSR ActionPairs3D.","PeriodicalId":146695,"journal":{"name":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"61 17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2014.7008115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Recently, mid-level features have shown promising performance in computer vision. Mid-level features learned by incorporating class-level information are potentially more discriminative than traditional low-level local features. In this paper, an effective method is proposed to extract mid-level features from Kinect skeletons for 3D human action recognition. Firstly, the orientations of limbs connected by two skeleton joints are computed and each orientation is encoded into one of the 27 states indicating the spatial relationship of the joints. Secondly, limbs are combined into parts and the limb's states are mapped into part states. Finally, frequent pattern mining is employed to mine the most frequent and relevant (discriminative, representative and non-redundant) states of parts in continuous several frames. These parts are referred to as Frequent Local Parts or FLPs. The FLPs allow us to build powerful bag-of-FLP-based action representation. This new representation yields state-of-the-art results on MSR DailyActivity3D and MSR ActionPairs3D.
基于有效骨架表示的动作识别中级特征挖掘
近年来,中级特征在计算机视觉中表现出了良好的性能。通过合并类级信息学习的中级特征可能比传统的低级局部特征更具判别性。本文提出了一种有效的Kinect骨架中层特征提取方法,用于三维人体动作识别。首先,计算由两个骨骼关节连接的肢体的方向,并将每个方向编码为表示关节空间关系的27种状态中的一种。其次,将肢体组合成零件,并将肢体状态映射为零件状态;最后,利用频繁模式挖掘在连续的几帧中挖掘出零件最频繁和最相关的状态(判别性、代表性和非冗余性)。这些部件被称为频繁局部部件或flp。flp允许我们构建强大的基于flp包的动作表示。这个新的表示在MSR DailyActivity3D和MSR ActionPairs3D上产生最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信