S3QLRDF: Property Table Partitioning Scheme for Distributed SPARQL Querying of large-scale RDF data

Mahmudul Hassan, S. Bansal
{"title":"S3QLRDF: Property Table Partitioning Scheme for Distributed SPARQL Querying of large-scale RDF data","authors":"Mahmudul Hassan, S. Bansal","doi":"10.1109/SMDS49396.2020.00023","DOIUrl":null,"url":null,"abstract":"The proliferation of the semantic web in the form of Resource Description Framework (RDF) demands an efficient, scalable, and distributed storage along with a highly available and fault-tolerant parallel processing strategy. More precisely, the rapid growth of RDF data raises the need for an efficient partitioning strategy over distributed data management systems to improve SPARQL query performance regardless of its pattern shape with minimized pre-processing time. In this context, we propose a new relational partitioning scheme called Property Table Partitioning (PTP) for RDF data, that further partitions existing Property Table into multiple tables based on distinct properties (comprising of all subjects with non-null values for those distinct properties) in order to minimize input data and join operations. In this paper, we introduce a distributed RDF data management system called S3QLRDF, which is built on top of Spark and utilizes SQL to execute SPARQL queries over PTP schema. We perform an extensive experimental evaluation with respect to preprocessing costs and query performance, using Lehigh University Benchmark (LUBM) and Waterloo SPARQL Diversity Test Suite (WatDiv) datasets with up to 1.4 billion triples. Our results demonstrate that S3QLRDF outperforms state-of-the-art distributed RDF management systems.","PeriodicalId":385149,"journal":{"name":"2020 IEEE International Conference on Smart Data Services (SMDS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Data Services (SMDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMDS49396.2020.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The proliferation of the semantic web in the form of Resource Description Framework (RDF) demands an efficient, scalable, and distributed storage along with a highly available and fault-tolerant parallel processing strategy. More precisely, the rapid growth of RDF data raises the need for an efficient partitioning strategy over distributed data management systems to improve SPARQL query performance regardless of its pattern shape with minimized pre-processing time. In this context, we propose a new relational partitioning scheme called Property Table Partitioning (PTP) for RDF data, that further partitions existing Property Table into multiple tables based on distinct properties (comprising of all subjects with non-null values for those distinct properties) in order to minimize input data and join operations. In this paper, we introduce a distributed RDF data management system called S3QLRDF, which is built on top of Spark and utilizes SQL to execute SPARQL queries over PTP schema. We perform an extensive experimental evaluation with respect to preprocessing costs and query performance, using Lehigh University Benchmark (LUBM) and Waterloo SPARQL Diversity Test Suite (WatDiv) datasets with up to 1.4 billion triples. Our results demonstrate that S3QLRDF outperforms state-of-the-art distributed RDF management systems.
用于大规模RDF数据的分布式SPARQL查询的属性表分区方案
以资源描述框架(Resource Description Framework, RDF)形式出现的语义web的激增需要高效、可伸缩的分布式存储以及高可用性和容错的并行处理策略。更准确地说,RDF数据的快速增长提出了对分布式数据管理系统的高效分区策略的需求,以提高SPARQL查询性能,无论其模式形状如何,同时尽量减少预处理时间。在这种情况下,我们提出了一种新的关系分区方案,称为RDF数据的属性表分区(Property Table partitioning, PTP),该方案根据不同的属性(包括所有具有这些不同属性的非空值的主题)将现有的属性表进一步划分为多个表,以尽量减少输入数据和连接操作。在本文中,我们介绍了一个名为S3QLRDF的分布式RDF数据管理系统,它建立在Spark之上,并利用SQL在PTP模式上执行SPARQL查询。我们使用Lehigh University Benchmark (LUBM)和Waterloo SPARQL Diversity Test Suite (WatDiv)数据集,对预处理成本和查询性能进行了广泛的实验评估,其中包含多达14亿个三元组。我们的结果表明,S3QLRDF优于最先进的分布式RDF管理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信