Existence of Infinite Orbits

R. Schwartz
{"title":"Existence of Infinite Orbits","authors":"R. Schwartz","doi":"10.2307/j.ctv5rf6tz.25","DOIUrl":null,"url":null,"abstract":"This chapter begins Part 5 of the book. This part is devoted mostly to the study of the distribution of the plaid polygons: their size and number depending on the parameter. Section 21.2 gives a criterion for a point in FX to have a well-defined orbit. Section 21.3 revisits the pixelated spacetime diagrams of capacity 2, and uses them to construct a large supply of plaid polygons having large diameter. The construction in Section 21.3 works one parameter at a time. Section 21.4 takes the limit of our construction relative to a sequence of even rational parameters converging to our irrational parameter. This limiting argument completes the proof. Section 21.5 explains how to associate a plaid path to an infinite orbit. Section 21.6 gives a quick alternate proof of Theorem 21.1, based on results from [S1].","PeriodicalId":205299,"journal":{"name":"The Plaid Model","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plaid Model","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv5rf6tz.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter begins Part 5 of the book. This part is devoted mostly to the study of the distribution of the plaid polygons: their size and number depending on the parameter. Section 21.2 gives a criterion for a point in FX to have a well-defined orbit. Section 21.3 revisits the pixelated spacetime diagrams of capacity 2, and uses them to construct a large supply of plaid polygons having large diameter. The construction in Section 21.3 works one parameter at a time. Section 21.4 takes the limit of our construction relative to a sequence of even rational parameters converging to our irrational parameter. This limiting argument completes the proof. Section 21.5 explains how to associate a plaid path to an infinite orbit. Section 21.6 gives a quick alternate proof of Theorem 21.1, based on results from [S1].
无限轨道的存在性
本章开始于本书的第五部分。这一部分主要研究格子多边形的分布:它们的大小和数量随参数的变化。第21.2节给出了FX中一个点具有定义良好的轨道的准则。第21.3节回顾了容量2的像素化时空图,并使用它们构建了大量具有大直径的格纹多边形。第21.3节中的构造每次工作一个参数。第21.4节给出了构造函数相对于收敛到我们的非理性参数的偶数有理参数序列的极限。这个极限论证完成了证明。第21.5节解释了如何将格子路径与无限轨道联系起来。第21.6节基于[S1]的结果给出定理21.1的快速替代证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信