FDT 1.0: An improved fuzzy decision tree induction tool

Na'el Abu-halaweh, R. Harrison
{"title":"FDT 1.0: An improved fuzzy decision tree induction tool","authors":"Na'el Abu-halaweh, R. Harrison","doi":"10.1109/NAFIPS.2010.5548193","DOIUrl":null,"url":null,"abstract":"FDT is a scalable supervised-classification freeware software tool implementing fuzzy decision trees. It is based on an improved version of the fuzzy ID3 (FID3) algorithm. It implements four different variations of FID3, the first utilizes fuzzy information gain, the second utilizes classification ambiguity, the third utilizes a fuzzy version of Gini-index and the fourth integrates fuzzy information gain and classification ambiguity to select a test (branching) feature. FDT also implements our previously published rule-set reduction method. The tool supports two inference methods: sum-of-products (X-X-+) and max-min. In this paper we introduce FDT and review its' major features and functionalities. In addition, we show that integrating our previously published rule-set reduction approach can improve the classification accuracy and can reduce the number of rules produced of all FID3 versions.","PeriodicalId":394892,"journal":{"name":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2010.5548193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

FDT is a scalable supervised-classification freeware software tool implementing fuzzy decision trees. It is based on an improved version of the fuzzy ID3 (FID3) algorithm. It implements four different variations of FID3, the first utilizes fuzzy information gain, the second utilizes classification ambiguity, the third utilizes a fuzzy version of Gini-index and the fourth integrates fuzzy information gain and classification ambiguity to select a test (branching) feature. FDT also implements our previously published rule-set reduction method. The tool supports two inference methods: sum-of-products (X-X-+) and max-min. In this paper we introduce FDT and review its' major features and functionalities. In addition, we show that integrating our previously published rule-set reduction approach can improve the classification accuracy and can reduce the number of rules produced of all FID3 versions.
FDT 1.0:改进的模糊决策树归纳工具
FDT是一个可扩展的监督分类免费软件工具,实现模糊决策树。它是基于模糊ID3 (FID3)算法的改进版本。它实现了FID3的四种不同变体,第一种利用模糊信息增益,第二种利用分类模糊度,第三种利用模糊版基尼指数,第四种综合模糊信息增益和分类模糊度来选择测试(分支)特征。FDT还实现了我们之前发布的规则集约简方法。该工具支持两种推理方法:乘积和(X-X-+)和max-min。本文介绍了FDT,并对其主要特性和功能进行了综述。此外,我们表明,集成我们之前发布的规则集约简方法可以提高分类精度,并可以减少所有FID3版本产生的规则数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信