Robust Minkowski sums of polyhedra via controlled linear perturbation

V. Milenkovic, E. Sacks, M. Kyung
{"title":"Robust Minkowski sums of polyhedra via controlled linear perturbation","authors":"V. Milenkovic, E. Sacks, M. Kyung","doi":"10.1145/1839778.1839782","DOIUrl":null,"url":null,"abstract":"We present a new approach, called controlled linear perturbation (CLP), to the robustness problem in computational geometry and demonstrate it on Minkowski sums of polyhedra. The robustness problem is how to implement real RAM algorithms accurately and efficiently using computer arithmetic. Large errors can occur when predicates are assigned inconsistent truth values because the computation assigns incorrect signs to the associated polynomials. CLP enforces consistency by performing a small input perturbation, which it computes using differential calculus. CLP enables us to compute Minkowski sums via convex convolution, whereas prior work uses convex decomposition, which has far greater complexity. Our program is fast and accurate even on inputs with many degeneracies.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1839778.1839782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a new approach, called controlled linear perturbation (CLP), to the robustness problem in computational geometry and demonstrate it on Minkowski sums of polyhedra. The robustness problem is how to implement real RAM algorithms accurately and efficiently using computer arithmetic. Large errors can occur when predicates are assigned inconsistent truth values because the computation assigns incorrect signs to the associated polynomials. CLP enforces consistency by performing a small input perturbation, which it computes using differential calculus. CLP enables us to compute Minkowski sums via convex convolution, whereas prior work uses convex decomposition, which has far greater complexity. Our program is fast and accurate even on inputs with many degeneracies.
基于控制线性扰动的多面体鲁棒Minkowski和
我们提出了一种新的方法,称为控制线性摄动(CLP),以解决计算几何中的鲁棒性问题,并在多面体的Minkowski和上证明了它。鲁棒性问题是如何使用计算机算法准确有效地实现真实的RAM算法。当给谓词分配不一致的真值时,可能会发生很大的错误,因为计算给相关的多项式分配了不正确的符号。CLP通过执行一个小的输入扰动来加强一致性,它使用微分计算。CLP使我们能够通过凸卷积来计算闵可夫斯基和,而之前的工作使用凸分解,这要复杂得多。我们的程序是快速和准确的,即使输入与许多退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信