Logic circuit diagnosis by using neural networks

H. Tatsumi, Y. Murai, S. Tokumasu
{"title":"Logic circuit diagnosis by using neural networks","authors":"H. Tatsumi, Y. Murai, S. Tokumasu","doi":"10.1109/ISMVL.2001.924594","DOIUrl":null,"url":null,"abstract":"This paper presents a new method of logic diagnosis for combinatorial logic circuits. First, for each type of circuit gates, an equivalent neural network gate is constructed. Then, by replacing circuit gate elements with corresponding neural network gates, an equivalent neural network circuit is constructed to the fault-free sample circuit. The testing procedure is to feed random patterns to both the neural network circuit and the fault-prone test circuit at the same time, and comparing, analyzing both outputs, the former circuit generates diagnostic data for the test circuit. Thus, the neural network circuit behaves like a diagnostic engine, and needs basically no preparation of special test patterns nor fault dictionary before diagnosing.","PeriodicalId":297353,"journal":{"name":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2001.924594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a new method of logic diagnosis for combinatorial logic circuits. First, for each type of circuit gates, an equivalent neural network gate is constructed. Then, by replacing circuit gate elements with corresponding neural network gates, an equivalent neural network circuit is constructed to the fault-free sample circuit. The testing procedure is to feed random patterns to both the neural network circuit and the fault-prone test circuit at the same time, and comparing, analyzing both outputs, the former circuit generates diagnostic data for the test circuit. Thus, the neural network circuit behaves like a diagnostic engine, and needs basically no preparation of special test patterns nor fault dictionary before diagnosing.
基于神经网络的逻辑电路诊断
提出了一种新的组合逻辑电路的逻辑诊断方法。首先,针对每种类型的电路门,构造一个等效的神经网络门。然后,通过用相应的神经网络栅极替换电路门单元,构造出一个等效的神经网络电路作为无故障采样电路。测试过程是将随机模式同时馈送到神经网络电路和易故障测试电路中,并对两者的输出进行比较、分析,由神经网络电路为测试电路生成诊断数据。因此,神经网络电路就像一台诊断引擎,在诊断前基本不需要准备专门的测试模式和故障字典。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信