Hybrid Evolutionary Learning Approaches for The Virus Game

M. Naveed, P. Cowling, M. A. Hossain
{"title":"Hybrid Evolutionary Learning Approaches for The Virus Game","authors":"M. Naveed, P. Cowling, M. A. Hossain","doi":"10.1109/CIG.2007.368098","DOIUrl":null,"url":null,"abstract":"This paper investigates the effectiveness of hybrids of learning and evolutionary approaches to find weights and topologies for an artificial neural network (ANN) which is used to evaluate board positions for a two-person zero-sum game, the virus game. Two hybrid approaches: evolutionary RPROP (resilient backpropagation) and evolutionary BP (backpropagation) are described and empirically compared with BP, RPROP, iRPROP (improved RPROP) and evolutionary learning approaches. The results show that evolutionary RPROP and evolutionary BP have significantly better generalisation performance than their constituent learning and evolutionary methods.","PeriodicalId":365269,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence and Games","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2007.368098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper investigates the effectiveness of hybrids of learning and evolutionary approaches to find weights and topologies for an artificial neural network (ANN) which is used to evaluate board positions for a two-person zero-sum game, the virus game. Two hybrid approaches: evolutionary RPROP (resilient backpropagation) and evolutionary BP (backpropagation) are described and empirically compared with BP, RPROP, iRPROP (improved RPROP) and evolutionary learning approaches. The results show that evolutionary RPROP and evolutionary BP have significantly better generalisation performance than their constituent learning and evolutionary methods.
病毒游戏的混合进化学习方法
本文研究了人工神经网络(ANN)的混合学习和进化方法的有效性,该方法用于评估两人零和博弈(病毒博弈)的棋盘位置。描述了进化RPROP(弹性反向传播)和进化BP(反向传播)两种混合方法,并与BP、RPROP、iRPROP(改进RPROP)和进化学习方法进行了实证比较。结果表明,进化RPROP和进化BP的泛化性能明显优于它们的组成学习和进化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信