Geometric completion of differential systems using numeric-symbolic continuation

SIGSAM Bull. Pub Date : 2002-06-02 DOI:10.1145/581316.581317
G. Reid, Chris Smith, J. Verschelde
{"title":"Geometric completion of differential systems using numeric-symbolic continuation","authors":"G. Reid, Chris Smith, J. Verschelde","doi":"10.1145/581316.581317","DOIUrl":null,"url":null,"abstract":"Symbolic algorithms using a finite number of exact differentiations and eliminations are able to reduce over and under-determined systems of polynomially nonlinear differential equations to involutive form. The output involutive form enables the identification of consistent initial values, and eases the application of exact or numerical integration methods.Motivated to avoid expression swell of pure symbolic approaches and with the desire to handle systems with approximate coefficients, we propose the use of homotopy continuation methods to perform the differential-elimination process on such non-square systems. Examples such as the classic index 3 Pendulum illustrate the new procedure. Our approach uses slicing by random linear subspaces to intersect its jet components in finitely many points. Generation of enough generic points enables irreducible jet components of the differential system to be interpolated.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/581316.581317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Symbolic algorithms using a finite number of exact differentiations and eliminations are able to reduce over and under-determined systems of polynomially nonlinear differential equations to involutive form. The output involutive form enables the identification of consistent initial values, and eases the application of exact or numerical integration methods.Motivated to avoid expression swell of pure symbolic approaches and with the desire to handle systems with approximate coefficients, we propose the use of homotopy continuation methods to perform the differential-elimination process on such non-square systems. Examples such as the classic index 3 Pendulum illustrate the new procedure. Our approach uses slicing by random linear subspaces to intersect its jet components in finitely many points. Generation of enough generic points enables irreducible jet components of the differential system to be interpolated.
用数值-符号延拓的微分系统的几何补全
使用有限数量的精确微分和消去的符号算法能够将多项式非线性微分方程的过定和欠定系统简化为对合形式。输出的对合形式能够识别一致的初始值,并简化了精确或数值积分方法的应用。为了避免纯符号方法的表达式膨胀,并希望处理具有近似系数的系统,我们提出使用同伦延拓方法对这类非平方系统进行微分消去处理。经典的指数3钟摆等例子说明了新的过程。我们的方法使用随机线性子空间的切片,在有限多个点上相交其射流分量。生成足够的一般点,可以插值微分系统的不可约射流分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信