{"title":"6DoF Pose Estimation for Intricately-Shaped Object with Prior Knowledge for Robotic Picking","authors":"Tonghui Jiao, Yanzhao Xia, Xiaosong Gao, Yongyu Chen, Qunfei Zhao","doi":"10.1109/ISASS.2019.8757758","DOIUrl":null,"url":null,"abstract":"Quick and accurate estimation for the 6-DoF pose of a randomly arranged object in intricate shape plays an important role in robotic picking applications. In this paper we propose an approach based on template matching by using the aligned RGB-D image with prior knowledge to recover the 6-DoF pose of a randomly arranged object. First, the object’s template database is generated with the help of a defined virtual imaging model and its CAD model. Then in the practical phase, we segment RGB-D image to get the mask representing the location of the object and then these data are modified into a comparable format with the characteristics of scale invariance. At last, a similar function with adjustable attention weight to color and depth data is defined to find Top-K matched templates. The selected matched templates are refined by ICP to generate the final answer. Experiments are conducted using an RGB-D camera and a robot arm to pick up given objects in intricate shape. The average recognition rate of the object in different poses is 97.826%. It also can work well with multiple objects randomly arranged with good masks representing the locations.","PeriodicalId":359959,"journal":{"name":"2019 3rd International Symposium on Autonomous Systems (ISAS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISASS.2019.8757758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quick and accurate estimation for the 6-DoF pose of a randomly arranged object in intricate shape plays an important role in robotic picking applications. In this paper we propose an approach based on template matching by using the aligned RGB-D image with prior knowledge to recover the 6-DoF pose of a randomly arranged object. First, the object’s template database is generated with the help of a defined virtual imaging model and its CAD model. Then in the practical phase, we segment RGB-D image to get the mask representing the location of the object and then these data are modified into a comparable format with the characteristics of scale invariance. At last, a similar function with adjustable attention weight to color and depth data is defined to find Top-K matched templates. The selected matched templates are refined by ICP to generate the final answer. Experiments are conducted using an RGB-D camera and a robot arm to pick up given objects in intricate shape. The average recognition rate of the object in different poses is 97.826%. It also can work well with multiple objects randomly arranged with good masks representing the locations.