Feature extraction of ECG signal for detection of ventricular fibrillation

M. Mohanty, P. Biswal, S. Sabut
{"title":"Feature extraction of ECG signal for detection of ventricular fibrillation","authors":"M. Mohanty, P. Biswal, S. Sabut","doi":"10.1109/MAMI.2015.7456595","DOIUrl":null,"url":null,"abstract":"Ventricular fibrillation (VF) is the intense arrhythmia condition which is the major cause of cardiac arrest. Quick and precise detection of VF is crucial for the success of delivering an electrical shock through defibrillator to save life. Feature extraction algorithms have been used in electrocardiogram (ECG) signal to extract temporal and spectral parameters for rhythm detection. In this paper, we present different arrhythmias detection algorithms for feature extraction of ECG signal. Seven parameters both temporal and spectral features are computed for normal and abnormal conditions of ECG signals. The algorithms are tested and the results are compared with widely recognized databases of MITBIH, SVDB. The extracted features may be used to improve the efficiency of machine learning algorithms for detection of life-threatening arrhythmias.","PeriodicalId":108908,"journal":{"name":"2015 International Conference on Man and Machine Interfacing (MAMI)","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Man and Machine Interfacing (MAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAMI.2015.7456595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ventricular fibrillation (VF) is the intense arrhythmia condition which is the major cause of cardiac arrest. Quick and precise detection of VF is crucial for the success of delivering an electrical shock through defibrillator to save life. Feature extraction algorithms have been used in electrocardiogram (ECG) signal to extract temporal and spectral parameters for rhythm detection. In this paper, we present different arrhythmias detection algorithms for feature extraction of ECG signal. Seven parameters both temporal and spectral features are computed for normal and abnormal conditions of ECG signals. The algorithms are tested and the results are compared with widely recognized databases of MITBIH, SVDB. The extracted features may be used to improve the efficiency of machine learning algorithms for detection of life-threatening arrhythmias.
心电信号特征提取用于心室颤动检测
心室颤动(VF)是一种强烈的心律失常,是心脏骤停的主要原因。快速、准确地检测心室颤动对于通过除颤器成功实施电击以挽救生命至关重要。特征提取算法已被用于心电图信号提取时间和频谱参数,用于心律检测。在本文中,我们提出了不同的心电信号特征提取的心律失常检测算法。计算了正常和异常状态下心电信号的时间和频谱特征。对算法进行了测试,并与广泛认可的MITBIH、SVDB数据库进行了比较。提取的特征可用于提高机器学习算法检测危及生命的心律失常的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信