Multi-level Multiple Attentions for Contextual Multimodal Sentiment Analysis

Soujanya Poria, E. Cambria, Devamanyu Hazarika, Navonil Majumder, Amir Zadeh, Louis-Philippe Morency
{"title":"Multi-level Multiple Attentions for Contextual Multimodal Sentiment Analysis","authors":"Soujanya Poria, E. Cambria, Devamanyu Hazarika, Navonil Majumder, Amir Zadeh, Louis-Philippe Morency","doi":"10.1109/ICDM.2017.134","DOIUrl":null,"url":null,"abstract":"Multimodal sentiment analysis involves identifying sentiment in videos and is a developing field of research. Unlike current works, which model utterances individually, we propose a recurrent model that is able to capture contextual information among utterances. In this paper, we also introduce attentionbased networks for improving both context learning and dynamic feature fusion. Our model shows 6-8% improvement over the state of the art on a benchmark dataset.","PeriodicalId":254086,"journal":{"name":"2017 IEEE International Conference on Data Mining (ICDM)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2017.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142

Abstract

Multimodal sentiment analysis involves identifying sentiment in videos and is a developing field of research. Unlike current works, which model utterances individually, we propose a recurrent model that is able to capture contextual information among utterances. In this paper, we also introduce attentionbased networks for improving both context learning and dynamic feature fusion. Our model shows 6-8% improvement over the state of the art on a benchmark dataset.
上下文多模态情感分析的多层次多关注
多模态情感分析涉及识别视频中的情感,是一个正在发展的研究领域。与目前的研究不同,我们提出了一个循环模型,能够捕捉话语之间的上下文信息。在本文中,我们还引入了基于注意力的网络来改进上下文学习和动态特征融合。我们的模型在基准数据集上显示了6-8%的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信