Tracking of a Moving Object Using One-Dimensional Optical Flow with a Rotating Observer

K. Kinoshita, Masaya Enokidani, M. Izumida, K. Murakami
{"title":"Tracking of a Moving Object Using One-Dimensional Optical Flow with a Rotating Observer","authors":"K. Kinoshita, Masaya Enokidani, M. Izumida, K. Murakami","doi":"10.1109/ICARCV.2006.345264","DOIUrl":null,"url":null,"abstract":"The optical flow is a useful tool for the tracking of a moving object. Estimation of the optical flow based on the gradient method is an ill-posed problem. In order to avoid this ill-posed problem, we proposed a tracking method using a one-dimensional optical flow, which is calculated on a straight line (called the calculation axis) spanning several directions. However, the motion of the observer was not considered. In this paper, we propose object tracking by a one-dimensional optical flow under a rotating observer. The apparent motion of a stationary environment object should be eliminated for calculating the one-dimensional optical flow. Hence, we introduce the detection method of a moving object by mapping, which converts the motion of a stationary environment object into a linear signal trajectory. We calculate the one-dimensional optical flow by using pixels, which belong to the moving object, to eliminate the apparent motion of the stationary environment object. In order to verify the efficacy of the proposed method, simulation is performed using synthesized images. The proposed method successfully tracks the moving object when the observer rotates at a constant angular velocity","PeriodicalId":415827,"journal":{"name":"2006 9th International Conference on Control, Automation, Robotics and Vision","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Control, Automation, Robotics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2006.345264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

The optical flow is a useful tool for the tracking of a moving object. Estimation of the optical flow based on the gradient method is an ill-posed problem. In order to avoid this ill-posed problem, we proposed a tracking method using a one-dimensional optical flow, which is calculated on a straight line (called the calculation axis) spanning several directions. However, the motion of the observer was not considered. In this paper, we propose object tracking by a one-dimensional optical flow under a rotating observer. The apparent motion of a stationary environment object should be eliminated for calculating the one-dimensional optical flow. Hence, we introduce the detection method of a moving object by mapping, which converts the motion of a stationary environment object into a linear signal trajectory. We calculate the one-dimensional optical flow by using pixels, which belong to the moving object, to eliminate the apparent motion of the stationary environment object. In order to verify the efficacy of the proposed method, simulation is performed using synthesized images. The proposed method successfully tracks the moving object when the observer rotates at a constant angular velocity
基于旋转观测器的一维光流运动目标跟踪
光流是跟踪运动物体的有用工具。基于梯度法的光流估计是一个不适定问题。为了避免这种不适定问题,我们提出了一种利用一维光流的跟踪方法,该方法在跨越多个方向的直线(称为计算轴)上进行计算。但是,没有考虑到观察员的动议。本文提出了在旋转观测器下利用一维光流跟踪目标的方法。在计算一维光流时,应消除静止环境物体的视运动。因此,我们引入了映射检测运动物体的方法,将静止环境物体的运动转化为线性信号轨迹。我们利用运动物体的象素来计算一维光流,以消除静止环境物体的视运动。为了验证该方法的有效性,利用合成图像进行了仿真。该方法在观察者以恒定角速度旋转时成功地跟踪了运动目标
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信