Haoxiang Zhang, Aécio S. R. Santos, Juliana Freire
{"title":"DSDD","authors":"Haoxiang Zhang, Aécio S. R. Santos, Juliana Freire","doi":"10.1145/3459637.3482427","DOIUrl":null,"url":null,"abstract":"With the push for transparency and open data, many datasets and data repositories are becoming available on the Web. This opens new opportunities for data-driven exploration, from empowering analysts to answer new questions and obtain insights to improving predictive models through data augmentation. But as datasets are spread over a plethora of Web sites, finding data that are relevant for a given task is difficult. In this paper, we take a first step towards the construction of domain-specific data lakes. We propose an end-to-end dataset discovery system, targeted at domain experts, which given a small set of keywords, automatically finds potentially relevant datasets on the Web. The system makes use of search engines to hop across Web sites, uses online learning to incrementally build a model to recognize sites that contain datasets, utilizes a set of discovery actions to broaden the search, and applies a multi-armed bandit based algorithm to balance the trade-offs of different discovery actions. We report the results of an extensive experimental evaluation over multiple domains, and demonstrate that our strategy is effective and outperforms state-of-the-art content discovery methods.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
With the push for transparency and open data, many datasets and data repositories are becoming available on the Web. This opens new opportunities for data-driven exploration, from empowering analysts to answer new questions and obtain insights to improving predictive models through data augmentation. But as datasets are spread over a plethora of Web sites, finding data that are relevant for a given task is difficult. In this paper, we take a first step towards the construction of domain-specific data lakes. We propose an end-to-end dataset discovery system, targeted at domain experts, which given a small set of keywords, automatically finds potentially relevant datasets on the Web. The system makes use of search engines to hop across Web sites, uses online learning to incrementally build a model to recognize sites that contain datasets, utilizes a set of discovery actions to broaden the search, and applies a multi-armed bandit based algorithm to balance the trade-offs of different discovery actions. We report the results of an extensive experimental evaluation over multiple domains, and demonstrate that our strategy is effective and outperforms state-of-the-art content discovery methods.