DSDD

Haoxiang Zhang, Aécio S. R. Santos, Juliana Freire
{"title":"DSDD","authors":"Haoxiang Zhang, Aécio S. R. Santos, Juliana Freire","doi":"10.1145/3459637.3482427","DOIUrl":null,"url":null,"abstract":"With the push for transparency and open data, many datasets and data repositories are becoming available on the Web. This opens new opportunities for data-driven exploration, from empowering analysts to answer new questions and obtain insights to improving predictive models through data augmentation. But as datasets are spread over a plethora of Web sites, finding data that are relevant for a given task is difficult. In this paper, we take a first step towards the construction of domain-specific data lakes. We propose an end-to-end dataset discovery system, targeted at domain experts, which given a small set of keywords, automatically finds potentially relevant datasets on the Web. The system makes use of search engines to hop across Web sites, uses online learning to incrementally build a model to recognize sites that contain datasets, utilizes a set of discovery actions to broaden the search, and applies a multi-armed bandit based algorithm to balance the trade-offs of different discovery actions. We report the results of an extensive experimental evaluation over multiple domains, and demonstrate that our strategy is effective and outperforms state-of-the-art content discovery methods.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the push for transparency and open data, many datasets and data repositories are becoming available on the Web. This opens new opportunities for data-driven exploration, from empowering analysts to answer new questions and obtain insights to improving predictive models through data augmentation. But as datasets are spread over a plethora of Web sites, finding data that are relevant for a given task is difficult. In this paper, we take a first step towards the construction of domain-specific data lakes. We propose an end-to-end dataset discovery system, targeted at domain experts, which given a small set of keywords, automatically finds potentially relevant datasets on the Web. The system makes use of search engines to hop across Web sites, uses online learning to incrementally build a model to recognize sites that contain datasets, utilizes a set of discovery actions to broaden the search, and applies a multi-armed bandit based algorithm to balance the trade-offs of different discovery actions. We report the results of an extensive experimental evaluation over multiple domains, and demonstrate that our strategy is effective and outperforms state-of-the-art content discovery methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信