Sparse Bayesian Estimation of Superimposed Signal Parameters

D. Shutin, G. Kubin
{"title":"Sparse Bayesian Estimation of Superimposed Signal Parameters","authors":"D. Shutin, G. Kubin","doi":"10.1109/CAMSAP.2007.4498018","DOIUrl":null,"url":null,"abstract":"This paper addresses parameter estimation of superimposed signals jointly with their number within the Bayesian framework. We combine sparse Bayesian machine learning methods with the state of the art SAGE-based parameter estimation algorithm. Existing sparse Bayesian methods allow to assess model order through priors over model parameters, but do not consider models nonlinear in parameters. SAGE-based parameter estimation does allow nonlinear model structures, but lacks a mechanism for model order estimation. Here we show how Gaussian and Laplace priors can be applied to enforce sparsity and determine the model order in case of superimposed signals, as well as develop an EM-based learning algorithm that efficiently estimate parameters of the superimposed signals as well as prior parameters that control the sparsity of the learned models. Our work extends the existing approaches to complex data and models nonlinear in parameters. We also present new analytical and empirical studies of the Laplace sparsity priors applied to complex data. The performance of the proposed algorithm is analyzed using synthetic data.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4498018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses parameter estimation of superimposed signals jointly with their number within the Bayesian framework. We combine sparse Bayesian machine learning methods with the state of the art SAGE-based parameter estimation algorithm. Existing sparse Bayesian methods allow to assess model order through priors over model parameters, but do not consider models nonlinear in parameters. SAGE-based parameter estimation does allow nonlinear model structures, but lacks a mechanism for model order estimation. Here we show how Gaussian and Laplace priors can be applied to enforce sparsity and determine the model order in case of superimposed signals, as well as develop an EM-based learning algorithm that efficiently estimate parameters of the superimposed signals as well as prior parameters that control the sparsity of the learned models. Our work extends the existing approaches to complex data and models nonlinear in parameters. We also present new analytical and empirical studies of the Laplace sparsity priors applied to complex data. The performance of the proposed algorithm is analyzed using synthetic data.
重叠信号参数的稀疏贝叶斯估计
本文研究了在贝叶斯框架下叠加信号及其数量的参数估计。我们将稀疏贝叶斯机器学习方法与最先进的基于sage的参数估计算法相结合。现有的稀疏贝叶斯方法允许通过模型参数上的先验来评估模型的顺序,但没有考虑模型参数的非线性。基于sage的参数估计确实允许非线性模型结构,但缺乏模型阶数估计的机制。在这里,我们展示了如何应用高斯和拉普拉斯先验来增强稀疏性,并在叠加信号的情况下确定模型顺序,以及开发一种基于em的学习算法,该算法可以有效地估计叠加信号的参数以及控制学习模型的稀疏性的先验参数。我们的工作扩展了现有的方法,以复杂的数据和模型非线性参数。我们也提出了新的拉普拉斯稀疏先验应用于复杂数据的分析和实证研究。利用合成数据分析了该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信