Convolutional Neural Network based Retinal Vessel Segmentation

Savithadevi M
{"title":"Convolutional Neural Network based Retinal Vessel Segmentation","authors":"Savithadevi M","doi":"10.5121/cseij.2022.12613","DOIUrl":null,"url":null,"abstract":"In human eye, the state of the blood vessel is a crucial diagnostic factor. The segmentation of blood vessel from the fundus image is difficult due to the spatial complexity, adjacency, overlapping and variability of blood vessel. The detection of ophthalmic pathologies like hypertensive disorders, diabetic retinopathy and cardiovascular diseases are remain challenging task due to the wide-ranging distribution of blood vessels. In this paper, Stacked Autoencoder and CNN (Convolutional Neural Network) technique is proposed to extract the blood vessel from the fundus image. Based on the experiments conducted using the Stacked Autoencoder and Convolutional Neural Network gives 90% & 95% accuracy for segmentation.","PeriodicalId":361871,"journal":{"name":"Computer Science & Engineering: An International Journal","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & Engineering: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/cseij.2022.12613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In human eye, the state of the blood vessel is a crucial diagnostic factor. The segmentation of blood vessel from the fundus image is difficult due to the spatial complexity, adjacency, overlapping and variability of blood vessel. The detection of ophthalmic pathologies like hypertensive disorders, diabetic retinopathy and cardiovascular diseases are remain challenging task due to the wide-ranging distribution of blood vessels. In this paper, Stacked Autoencoder and CNN (Convolutional Neural Network) technique is proposed to extract the blood vessel from the fundus image. Based on the experiments conducted using the Stacked Autoencoder and Convolutional Neural Network gives 90% & 95% accuracy for segmentation.
基于卷积神经网络的视网膜血管分割
在人眼中,血管的状态是一个至关重要的诊断因素。由于眼底图像中血管的空间复杂性、邻接性、重叠性和多变性,使得眼底图像中血管的分割非常困难。由于血管分布广泛,高血压疾病、糖尿病视网膜病变和心血管疾病等眼科疾病的检测仍然是一项具有挑战性的任务。本文采用堆叠自编码器和卷积神经网络(CNN)技术从眼底图像中提取血管。基于堆叠自编码器和卷积神经网络的实验,给出了90%和95%的分割准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信