Text-based CAPTCHA Vulnerability Assessment using a Deep Learning-based Solver

Daniel Aguilar, Daniel Riofrío, D. Benítez, Noel Pérez, Ricardo Flores Moyano
{"title":"Text-based CAPTCHA Vulnerability Assessment using a Deep Learning-based Solver","authors":"Daniel Aguilar, Daniel Riofrío, D. Benítez, Noel Pérez, Ricardo Flores Moyano","doi":"10.1109/ETCM53643.2021.9590750","DOIUrl":null,"url":null,"abstract":"The focus of this work is to test the security offered by Text-based CAPTCHAs. We present different types of CAPTCHAs and a preprocessing and segmentation process to clean noise in CAPTCHA images and crop digits or characters in single images. We present a convolutional neural network architecture trained under several hyperparameters, comparing multiple models with different batch sizes, epochs, and optimizers. We confirmed that using Text-based CAPTCHAs is no longer a secure mechanism for protection because, with simple computer vision techniques and current machine learning algorithms, they can be broken. We achieved a 90.49% accuracy with our model trained with a mix of four datasets and up to 97.10% with one dataset, which is enough to consider these schemes insecure in practice.","PeriodicalId":438567,"journal":{"name":"2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM53643.2021.9590750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The focus of this work is to test the security offered by Text-based CAPTCHAs. We present different types of CAPTCHAs and a preprocessing and segmentation process to clean noise in CAPTCHA images and crop digits or characters in single images. We present a convolutional neural network architecture trained under several hyperparameters, comparing multiple models with different batch sizes, epochs, and optimizers. We confirmed that using Text-based CAPTCHAs is no longer a secure mechanism for protection because, with simple computer vision techniques and current machine learning algorithms, they can be broken. We achieved a 90.49% accuracy with our model trained with a mix of four datasets and up to 97.10% with one dataset, which is enough to consider these schemes insecure in practice.
基于文本的CAPTCHA漏洞评估,基于深度学习的求解器
这项工作的重点是测试基于文本的captcha提供的安全性。我们提出了不同类型的CAPTCHA和预处理和分割过程,以清除CAPTCHA图像中的噪声和裁剪单个图像中的数字或字符。我们提出了一个在几个超参数下训练的卷积神经网络架构,比较了具有不同批大小、时代和优化器的多个模型。我们确认,使用基于文本的captcha不再是一种安全的保护机制,因为使用简单的计算机视觉技术和当前的机器学习算法,它们可以被破解。我们用四个数据集混合训练的模型达到了90.49%的准确率,用一个数据集训练的准确率高达97.10%,这足以认为这些方案在实践中是不安全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信