Daniel Aguilar, Daniel Riofrío, D. Benítez, Noel Pérez, Ricardo Flores Moyano
{"title":"Text-based CAPTCHA Vulnerability Assessment using a Deep Learning-based Solver","authors":"Daniel Aguilar, Daniel Riofrío, D. Benítez, Noel Pérez, Ricardo Flores Moyano","doi":"10.1109/ETCM53643.2021.9590750","DOIUrl":null,"url":null,"abstract":"The focus of this work is to test the security offered by Text-based CAPTCHAs. We present different types of CAPTCHAs and a preprocessing and segmentation process to clean noise in CAPTCHA images and crop digits or characters in single images. We present a convolutional neural network architecture trained under several hyperparameters, comparing multiple models with different batch sizes, epochs, and optimizers. We confirmed that using Text-based CAPTCHAs is no longer a secure mechanism for protection because, with simple computer vision techniques and current machine learning algorithms, they can be broken. We achieved a 90.49% accuracy with our model trained with a mix of four datasets and up to 97.10% with one dataset, which is enough to consider these schemes insecure in practice.","PeriodicalId":438567,"journal":{"name":"2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM53643.2021.9590750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The focus of this work is to test the security offered by Text-based CAPTCHAs. We present different types of CAPTCHAs and a preprocessing and segmentation process to clean noise in CAPTCHA images and crop digits or characters in single images. We present a convolutional neural network architecture trained under several hyperparameters, comparing multiple models with different batch sizes, epochs, and optimizers. We confirmed that using Text-based CAPTCHAs is no longer a secure mechanism for protection because, with simple computer vision techniques and current machine learning algorithms, they can be broken. We achieved a 90.49% accuracy with our model trained with a mix of four datasets and up to 97.10% with one dataset, which is enough to consider these schemes insecure in practice.