Near-Field Far-Field Transformations with Unknown Probe Antennas

A. Paulus, T. Eibert
{"title":"Near-Field Far-Field Transformations with Unknown Probe Antennas","authors":"A. Paulus, T. Eibert","doi":"10.23919/EuCAP57121.2023.10133026","DOIUrl":null,"url":null,"abstract":"The characterization of unknown antennas under test (AUTs) from measurements of the radiated near field (NF) is commonly performed with known probe antennas. By accounting for the behavior of a given probe in the processing of the NF data, the obtained quantities of interest, e.g., the far-field (FF) behavior of the radiator, are free of biases and distortions caused by the probe sensor. We discuss an NF FF transformation (NFFFT) which can fully compensate the effect of the probe, while only requiring knowledge about its electrical size, position, and orientation. An iterative nonconvex technique based on alternating projections is discussed, as well as a convex approach utilizing bilinear forms is provided. Connections to the related problem of phase retrieval are highlighted. Simulation results showcase the validity of NFFFTs with full probe correction of unknown probes and shed some light on potential limitations.","PeriodicalId":103360,"journal":{"name":"2023 17th European Conference on Antennas and Propagation (EuCAP)","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 17th European Conference on Antennas and Propagation (EuCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EuCAP57121.2023.10133026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The characterization of unknown antennas under test (AUTs) from measurements of the radiated near field (NF) is commonly performed with known probe antennas. By accounting for the behavior of a given probe in the processing of the NF data, the obtained quantities of interest, e.g., the far-field (FF) behavior of the radiator, are free of biases and distortions caused by the probe sensor. We discuss an NF FF transformation (NFFFT) which can fully compensate the effect of the probe, while only requiring knowledge about its electrical size, position, and orientation. An iterative nonconvex technique based on alternating projections is discussed, as well as a convex approach utilizing bilinear forms is provided. Connections to the related problem of phase retrieval are highlighted. Simulation results showcase the validity of NFFFTs with full probe correction of unknown probes and shed some light on potential limitations.
未知探测天线的近场远场变换
从辐射近场(NF)测量中对未知被测天线(AUTs)进行表征通常是用已知的探测天线进行的。通过在处理NF数据时考虑给定探头的行为,所获得的感兴趣量,例如散热器的远场(FF)行为,不受探头传感器引起的偏差和扭曲的影响。我们讨论了一种NF - FF变换(NFFFT),它可以完全补偿探针的影响,而只需要了解探针的电尺寸、位置和方向。讨论了一种基于交替投影的迭代非凸方法,以及一种利用双线性形式的凸方法。强调了与相位检索相关问题的联系。仿真结果显示了nffft对未知探针进行全探针校正的有效性,并揭示了潜在的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信