24.3 A 3nm Gate-All-Around SRAM Featuring an Adaptive Dual-BL and an Adaptive Cell-Power Assist Circuit

T. Song, W. Rim, Hoonki Kim, K. Cho, Taeyeong Kim, Taejung Lee, Geumjong Bae, Dong-Won Kim, S. Kwon, S. Baek, Jonghoon Jung, J. Kye, Hakchul Jung, Hyungtae Kim, Soon-Moon Jung, Jaehong Park
{"title":"24.3 A 3nm Gate-All-Around SRAM Featuring an Adaptive Dual-BL and an Adaptive Cell-Power Assist Circuit","authors":"T. Song, W. Rim, Hoonki Kim, K. Cho, Taeyeong Kim, Taejung Lee, Geumjong Bae, Dong-Won Kim, S. Kwon, S. Baek, Jonghoon Jung, J. Kye, Hakchul Jung, Hyungtae Kim, Soon-Moon Jung, Jaehong Park","doi":"10.1109/ISSCC42613.2021.9365988","DOIUrl":null,"url":null,"abstract":"Advanced technologies help to improve SRAM performance via recent transistor breakthroughs [1], which allow SRAM designers to focus on handling metal resistance by alleviating device performance impediments. Since SRAM margins are more vulnerable to the increasing metal resistance, due to smaller critical dimensions, SRAM-assist circuits are proposed to overcome the impact of metal resistance in recent technologies [2 –5]. One of the challenges is the design limitation such as the quantized transistor, which requires SRAM-assist to optimize SRAM margins. In this paper, gate-all-around (GAA) SRAM design techniques are proposed, which improve SRAM margins more freely, in addition to power, performance, and area (PPA). Moreover, SRAM-assist schemes are proposed to overcome metal resistance, which maximizes the benefit of GAA devices.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Advanced technologies help to improve SRAM performance via recent transistor breakthroughs [1], which allow SRAM designers to focus on handling metal resistance by alleviating device performance impediments. Since SRAM margins are more vulnerable to the increasing metal resistance, due to smaller critical dimensions, SRAM-assist circuits are proposed to overcome the impact of metal resistance in recent technologies [2 –5]. One of the challenges is the design limitation such as the quantized transistor, which requires SRAM-assist to optimize SRAM margins. In this paper, gate-all-around (GAA) SRAM design techniques are proposed, which improve SRAM margins more freely, in addition to power, performance, and area (PPA). Moreover, SRAM-assist schemes are proposed to overcome metal resistance, which maximizes the benefit of GAA devices.
24.3具有自适应双bl和自适应电池电源辅助电路的3nm栅极全能SRAM
通过最近的晶体管突破,先进技术有助于提高SRAM的性能[1],这使得SRAM设计人员可以通过减轻器件性能障碍来专注于处理金属电阻。由于临界尺寸较小,SRAM边缘更容易受到金属电阻增加的影响,因此在最近的技术中,SRAM辅助电路被提出来克服金属电阻的影响[2 -5]。其中一个挑战是设计限制,如量子化晶体管,这需要SRAM辅助来优化SRAM余量。本文提出了栅极全能(GAA) SRAM设计技术,除了功率、性能和面积(PPA)外,还可以更自由地提高SRAM的余量。此外,还提出了sram辅助方案来克服金属电阻,从而最大限度地提高GAA器件的效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信