FedSD: A New Federated Learning Structure Used in Non-iid Data

Minmin Yi, Houchun Ning, Peng Liu
{"title":"FedSD: A New Federated Learning Structure Used in Non-iid Data","authors":"Minmin Yi, Houchun Ning, Peng Liu","doi":"10.1109/ICASSP49357.2023.10095595","DOIUrl":null,"url":null,"abstract":"One of the most challenging problems in federated learning is the convergence speed problem caused by heterogeneity. We propose a novel structure called FedSD, a new method to accelerate the model convergence. We change the one-stage-cycle iteration structure to a 2-stage-cycle one to get the latest global gradient descent direction which can guide the model training direction. We instantiate algorithms using FedSD to improve the performance of experiments on several public datasets. Our empirical studies validate the excellent performance of FedSD.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most challenging problems in federated learning is the convergence speed problem caused by heterogeneity. We propose a novel structure called FedSD, a new method to accelerate the model convergence. We change the one-stage-cycle iteration structure to a 2-stage-cycle one to get the latest global gradient descent direction which can guide the model training direction. We instantiate algorithms using FedSD to improve the performance of experiments on several public datasets. Our empirical studies validate the excellent performance of FedSD.
FedSD:用于非id数据的新型联邦学习结构
在联邦学习中最具挑战性的问题之一是由异构性引起的收敛速度问题。我们提出了一种新的结构,称为FedSD,一种加速模型收敛的新方法。我们将一阶循环迭代结构改为两阶循环迭代结构,得到最新的全局梯度下降方向,从而指导模型的训练方向。我们使用FedSD实例化算法,以提高在几个公共数据集上的实验性能。我们的实证研究验证了FedSD的优异性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信