Perbandingan Nilai Akurasi Snort dan Suricata dalam Mendeteksi Intrusi Lalu Lintas di Jaringan

Info Kripto Pub Date : 2021-08-18 DOI:10.56706/ik.v15i2.10
Adam Dwi Ralianto, S. Cahyono
{"title":"Perbandingan Nilai Akurasi Snort dan Suricata dalam Mendeteksi Intrusi Lalu Lintas di Jaringan","authors":"Adam Dwi Ralianto, S. Cahyono","doi":"10.56706/ik.v15i2.10","DOIUrl":null,"url":null,"abstract":"Seiring bertambahnya pengguna internet, semakin canggih juga serangan siber yang terjadi. Berdasarkan laporan tahunan dari Honeynet Project BSSN, tahun 2018 telah terjadi 12.895.554 serangan yang masuk ke Indonesia dan 513.863 berupa aplikasi berbahaya. Serangan-serangan ini apabila tidak terdeteksi dan dicegah, maka dapat menurunkan kredibilitas layanan, seperti kerahasiaan data, integritas, dan ketersediaan data. Sehingga dibutuhkan aplikasi yang mampu mendeteksi banyaknya serangan tersebut, yaitu Instrusion Detection System (IDS). Terdapat beberapa aplikasi IDS yang ada, seperti Snort dan Suricata. Dari banyak aplikasi yang ada, perlu dilakukan analisis terhadap kemampuannya dalam mendeteksi intrusi di jaringan. Salah satu kemampuan yang harus dianalisis yaitu akurasi. Akurasi adalah sebuah metrik yang mengukur seberapa benar IDS bekerja dengan mengukur persentase deteksi dan kegagalan serta jumlah peringatan palsu yang dihasilkan suatu sistem. Akurasi dalam mendeteksi serangan-serangan ini menjadi tantangan untuk aplikasi IDS. Dalam melakukan analisis diawali dengan melakukan pengujian dengan menggunakan Pytbull terhadap aplikasi Snort dan Suricata. Pytbull dikonfigurasi dengan 70  serangan yang dikelompokkan dalam 11 modul serangan. Pengujian dilakukan dalam 3 skenario, yaitu menggunakan rules asli, rules dari Emerging Threat, dan rules yang dibuat sendiri. Penelitian ini, memberikan penjelasan terkait bagaimana melakukan pengujian menggunakan Pytbull terhadap Snort dan Suricata menggunakan 3 skenario yang telah ditentukan yang kemudian dilanjutkan analisis dengan menghitung nilai akurasinya untuk dibandingkan mana yang lebih baik. Dari penelitian ini didapatkan hasil bahwa Suricata versi 5.0.2 dengan pengujian menggunakan Pytbull dalam 3 skenario, memiliki akurasi lebih tinggi daripada Snort versi 2.9.15.1 karena memiliki rules yang lebih banyak. Walaupun rules lebih banyak, namun penggunaan memory Suricata lebih stabil karena menggunakan fitur multi-threading yang dimilikinya.","PeriodicalId":112303,"journal":{"name":"Info Kripto","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Info Kripto","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56706/ik.v15i2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Seiring bertambahnya pengguna internet, semakin canggih juga serangan siber yang terjadi. Berdasarkan laporan tahunan dari Honeynet Project BSSN, tahun 2018 telah terjadi 12.895.554 serangan yang masuk ke Indonesia dan 513.863 berupa aplikasi berbahaya. Serangan-serangan ini apabila tidak terdeteksi dan dicegah, maka dapat menurunkan kredibilitas layanan, seperti kerahasiaan data, integritas, dan ketersediaan data. Sehingga dibutuhkan aplikasi yang mampu mendeteksi banyaknya serangan tersebut, yaitu Instrusion Detection System (IDS). Terdapat beberapa aplikasi IDS yang ada, seperti Snort dan Suricata. Dari banyak aplikasi yang ada, perlu dilakukan analisis terhadap kemampuannya dalam mendeteksi intrusi di jaringan. Salah satu kemampuan yang harus dianalisis yaitu akurasi. Akurasi adalah sebuah metrik yang mengukur seberapa benar IDS bekerja dengan mengukur persentase deteksi dan kegagalan serta jumlah peringatan palsu yang dihasilkan suatu sistem. Akurasi dalam mendeteksi serangan-serangan ini menjadi tantangan untuk aplikasi IDS. Dalam melakukan analisis diawali dengan melakukan pengujian dengan menggunakan Pytbull terhadap aplikasi Snort dan Suricata. Pytbull dikonfigurasi dengan 70  serangan yang dikelompokkan dalam 11 modul serangan. Pengujian dilakukan dalam 3 skenario, yaitu menggunakan rules asli, rules dari Emerging Threat, dan rules yang dibuat sendiri. Penelitian ini, memberikan penjelasan terkait bagaimana melakukan pengujian menggunakan Pytbull terhadap Snort dan Suricata menggunakan 3 skenario yang telah ditentukan yang kemudian dilanjutkan analisis dengan menghitung nilai akurasinya untuk dibandingkan mana yang lebih baik. Dari penelitian ini didapatkan hasil bahwa Suricata versi 5.0.2 dengan pengujian menggunakan Pytbull dalam 3 skenario, memiliki akurasi lebih tinggi daripada Snort versi 2.9.15.1 karena memiliki rules yang lebih banyak. Walaupun rules lebih banyak, namun penggunaan memory Suricata lebih stabil karena menggunakan fitur multi-threading yang dimilikinya.
通气点与通气点的价值比较,以检测网络上的流量入侵
随着互联网用户的增加,网络攻击也变得更加复杂。根据Honeynet BSSN项目的年度报告,2018年发生了一起进入印尼的12895554攻击和危险应用的513863。这些袭击,当无法检测和预防,就可以免费得到服务信誉降低,如保密、完整性和可用性数据。袭击发生,以至于需要可以探测到许多的应用程序,即Instrusion Detection(身份证)系统。这里有一些id应用程序,比如Snort和Suricata。有很多的应用,需要做分析的能力在网络入侵检测。必须分析的能力之一是准确性。准确性是一个政治上正确的衡量指标的身份证,通过测量比例失败和检测工作制度产生的虚惊一场。身份证,让应用程序的准确性检测这些袭击中是一个挑战。用Pytbull做以分析测试中对吸和Suricata应用。Pytbull配置模块中分类的70次袭击11袭击。测试做最初的三个场景,即使用规则中,新兴威胁的规则,规则是自制的。这项研究测试,给出了相关的解释怎么做对吸和Suricata Pytbull使用指定3的场景相比,随后通过计算价值分析准确性的哪个更好。这项研究得到的结果,Suricata版本5 0。2测试用Pytbull三场不同的场景,有准确性高于吸版本2 . 9 . 15 . 1,因为有更多的规则。虽然更多的规则,但使用内存Suricata更稳定,因为使用multi-threading功能所不及。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信