A semantic approach for automatic image annotation

M. Oujaoura, B. Minaoui, M. Fakir
{"title":"A semantic approach for automatic image annotation","authors":"M. Oujaoura, B. Minaoui, M. Fakir","doi":"10.1109/SITA.2013.6560800","DOIUrl":null,"url":null,"abstract":"Many features extraction method and classifiers are used singly, with modest results, for automatic image annotation. In order to improve the semantic image annotation accuracy, this document provides an automatic system to annotate image content by using a fusion of 3 classifier and a combination of some features extraction methods; multiclass support vector machine, multilayer neural network and nearest neighbour classifiers are combined together in order to classify and to find the appropriate keywords for this content. The color histograms and moments are used in this paper as features to represent image content. We support our case by experimental results obtained from two image databases (ETH-80 and coil-100 databases ).","PeriodicalId":145244,"journal":{"name":"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITA.2013.6560800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Many features extraction method and classifiers are used singly, with modest results, for automatic image annotation. In order to improve the semantic image annotation accuracy, this document provides an automatic system to annotate image content by using a fusion of 3 classifier and a combination of some features extraction methods; multiclass support vector machine, multilayer neural network and nearest neighbour classifiers are combined together in order to classify and to find the appropriate keywords for this content. The color histograms and moments are used in this paper as features to represent image content. We support our case by experimental results obtained from two image databases (ETH-80 and coil-100 databases ).
一种自动图像标注的语义方法
在图像自动标注中,许多特征提取方法和分类器单独使用,效果一般。为了提高语义图像标注的准确性,本文采用融合3种分类器,结合一些特征提取方法,提供了一种自动标注图像内容的系统;将多类支持向量机、多层神经网络和最近邻分类器相结合,对该内容进行分类并找到合适的关键词。本文使用颜色直方图和矩作为特征来表示图像内容。我们用两个图像数据库(ETH-80和coil-100数据库)的实验结果来支持我们的案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信