Global and local consistent multi-view subspace clustering

Yanbo Fan, R. He, Bao-Gang Hu
{"title":"Global and local consistent multi-view subspace clustering","authors":"Yanbo Fan, R. He, Bao-Gang Hu","doi":"10.1109/ACPR.2015.7486566","DOIUrl":null,"url":null,"abstract":"Multi-view clustering aims to cluster data with multiple sources of information. Comparing with single view clustering, it is challenging to make use of the extra information embedded in multiple views. This paper presents a multi-view subspace clustering method (MSC-GL) by simultaneously combining both the global low-rank constraint and local cross topology preserving constraints. The global constraint maximizes the correlation between representational matrices while encouraging each of them to be low rank. The local constraints enable representational matrices under different views to share local structure information. An efficiently iterative algorithm is developed to minimize the proposed joint learning problem, and extensive experiments on five multi-view benchmarks demonstrate that the proposed model outperforms the state-of-the-art multiview clustering methods.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Multi-view clustering aims to cluster data with multiple sources of information. Comparing with single view clustering, it is challenging to make use of the extra information embedded in multiple views. This paper presents a multi-view subspace clustering method (MSC-GL) by simultaneously combining both the global low-rank constraint and local cross topology preserving constraints. The global constraint maximizes the correlation between representational matrices while encouraging each of them to be low rank. The local constraints enable representational matrices under different views to share local structure information. An efficiently iterative algorithm is developed to minimize the proposed joint learning problem, and extensive experiments on five multi-view benchmarks demonstrate that the proposed model outperforms the state-of-the-art multiview clustering methods.
全局和局部一致性多视图子空间聚类
多视图聚类旨在对具有多个信息源的数据进行聚类。与单视图聚类相比,利用嵌入在多个视图中的额外信息是一个挑战。将全局低秩约束和局部交叉拓扑保持约束相结合,提出了一种多视图子空间聚类方法(MSC-GL)。全局约束最大化了表示矩阵之间的相关性,同时鼓励每个矩阵都是低秩的。局部约束使不同视图下的表示矩阵能够共享局部结构信息。开发了一种有效的迭代算法来最小化所提出的联合学习问题,并且在五个多视图基准上的大量实验表明,所提出的模型优于最先进的多视图聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信