When the medial axis meets the singularities

M. Denkowski
{"title":"When the medial axis meets the singularities","authors":"M. Denkowski","doi":"10.18778/8142-814-9.05","DOIUrl":null,"url":null,"abstract":". In this survey we present recent results in the study of the medial axes of sets definable in polynomially bounded o-minimal structures. We take the novel point of view of singularity theory. Indeed, it has been observed only recently that the medial axis — i.e. the set of points with more than one closest point to a given closed set X ⊂ R n (with respect to the Euclidean distance) — reaches some singular points of X bringing along some metric information about them.","PeriodicalId":273656,"journal":{"name":"Analytic and Algebraic Geometry 3","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic and Algebraic Geometry 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/8142-814-9.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. In this survey we present recent results in the study of the medial axes of sets definable in polynomially bounded o-minimal structures. We take the novel point of view of singularity theory. Indeed, it has been observed only recently that the medial axis — i.e. the set of points with more than one closest point to a given closed set X ⊂ R n (with respect to the Euclidean distance) — reaches some singular points of X bringing along some metric information about them.
当中轴遇到奇点时
。在这篇综述中,我们给出了在多项式有界0 -极小结构中可定义集的中轴的最新研究结果。我们采用奇点理论的新观点。实际上,直到最近才观察到,中轴线——即与给定闭集X∧R n(相对于欧几里得距离)有多个最近点的点的集合——到达X的一些奇点,并带来关于它们的一些度量信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信