A comparison of human skeleton extractors for real-time human-robot interaction

Wanchen Li, R. Passama, Vincent Bonnet, A. Cherubini
{"title":"A comparison of human skeleton extractors for real-time human-robot interaction","authors":"Wanchen Li, R. Passama, Vincent Bonnet, A. Cherubini","doi":"10.1109/ARSO56563.2023.10187411","DOIUrl":null,"url":null,"abstract":"Modern industrial manufacturing procedures gradually integrate physical Human-Robot interaction (pHRI) scenarios. This requires robots to understand human intentions for effective and safe cooperation. Vision is the most commonly used sensor modality for robots to perceive human behavior. In this paper, we compare various vision-based human skeleton extraction frameworks, to provide guidance for the design of human-robot interaction applications. We run various skeleton extractors on a video of a person working with the help of a dual-arm collaborative robot, in a scenario simulating a typical human-robot workspace. By comparing the outcomes of the various skeleton extractors, we justify our choices according to pHRI constraints.","PeriodicalId":382832,"journal":{"name":"2023 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO)","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARSO56563.2023.10187411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Modern industrial manufacturing procedures gradually integrate physical Human-Robot interaction (pHRI) scenarios. This requires robots to understand human intentions for effective and safe cooperation. Vision is the most commonly used sensor modality for robots to perceive human behavior. In this paper, we compare various vision-based human skeleton extraction frameworks, to provide guidance for the design of human-robot interaction applications. We run various skeleton extractors on a video of a person working with the help of a dual-arm collaborative robot, in a scenario simulating a typical human-robot workspace. By comparing the outcomes of the various skeleton extractors, we justify our choices according to pHRI constraints.
用于实时人机交互的人体骨骼提取器的比较
现代工业制造流程逐渐整合物理人机交互(pHRI)场景。这就要求机器人理解人类的意图,以便进行有效和安全的合作。视觉是机器人感知人类行为最常用的传感器方式。在本文中,我们比较了各种基于视觉的人体骨骼提取框架,为人机交互应用的设计提供指导。我们在一个模拟典型人机工作空间的场景中,在一个人在双臂协作机器人的帮助下工作的视频上运行各种骨骼提取器。通过比较各种骨骼提取器的结果,我们根据pHRI的限制来证明我们的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信