Improving the parametric Gaussian classifier using neural networks

H. El Sorady, A. Shoukry, S. Bassiouny
{"title":"Improving the parametric Gaussian classifier using neural networks","authors":"H. El Sorady, A. Shoukry, S. Bassiouny","doi":"10.1109/NRSC.1996.551118","DOIUrl":null,"url":null,"abstract":"The statistical approach to pattern recognition is among the early approaches applied in this field of research. This paper presents a mixed statistical parametric and neural networks approach for classifiers design. Statistical parametric techniques have the advantage of being mathematically tractable but are often non-optimal due to the need of making some assumptions about the shape of the distribution of the input data samples (e.g. being a multivariate normal distribution) and the need to estimate the distribution parameters (e.g. the mean vector and the covariance matrix) from the training data. On the other hand, neural networks classifiers are model (distribution) free. Therefore, they can be used to improve the performance of an initially given statistical classifier. Computer simulation results are given that show the efficiency of the proposed technique.","PeriodicalId":127585,"journal":{"name":"Thirteenth National Radio Science Conference. NRSC '96","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thirteenth National Radio Science Conference. NRSC '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.1996.551118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The statistical approach to pattern recognition is among the early approaches applied in this field of research. This paper presents a mixed statistical parametric and neural networks approach for classifiers design. Statistical parametric techniques have the advantage of being mathematically tractable but are often non-optimal due to the need of making some assumptions about the shape of the distribution of the input data samples (e.g. being a multivariate normal distribution) and the need to estimate the distribution parameters (e.g. the mean vector and the covariance matrix) from the training data. On the other hand, neural networks classifiers are model (distribution) free. Therefore, they can be used to improve the performance of an initially given statistical classifier. Computer simulation results are given that show the efficiency of the proposed technique.
利用神经网络改进参数高斯分类器
模式识别的统计方法是早期应用于这一研究领域的方法之一。本文提出了一种混合统计参数和神经网络的分类器设计方法。统计参数技术具有数学上易于处理的优点,但由于需要对输入数据样本的分布形状做出一些假设(例如,作为多元正态分布),并且需要从训练数据中估计分布参数(例如,均值向量和协方差矩阵),因此通常不是最优的。另一方面,神经网络分类器是模型(分布)无关的。因此,它们可以用来提高初始给定统计分类器的性能。计算机仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信