Situation-Adaptive Object Grasping Recognition in VR Environment

Koki Hirota, T. Komuro
{"title":"Situation-Adaptive Object Grasping Recognition in VR Environment","authors":"Koki Hirota, T. Komuro","doi":"10.1109/AIVR46125.2019.00035","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for recognizing grasping of virtual objects in VR environment. The proposed method utilizes the fact that the position and shape of the virtual object to be grasped are known. A camera acquires an image of the user grasping a virtual object, and the posture of the hand is extracted from that image. The obtained hand posture is used to classify whether it is a grasping action or not. In order to evaluate the proposed method, we created a new dataset that was specialized for grasping virtual objects with a bare hand. There were three shapes and three positions of virtual objects in the dataset. The recognition rate of the classifier that was trained using the dataset with specific shapes of virtual objects was 93.18 %, and that with all the shapes of virtual objects was 87.71 %. This result shows that the recognition rate was improved by training the classifier using the shape-dependent dataset.","PeriodicalId":274566,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR46125.2019.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a method for recognizing grasping of virtual objects in VR environment. The proposed method utilizes the fact that the position and shape of the virtual object to be grasped are known. A camera acquires an image of the user grasping a virtual object, and the posture of the hand is extracted from that image. The obtained hand posture is used to classify whether it is a grasping action or not. In order to evaluate the proposed method, we created a new dataset that was specialized for grasping virtual objects with a bare hand. There were three shapes and three positions of virtual objects in the dataset. The recognition rate of the classifier that was trained using the dataset with specific shapes of virtual objects was 93.18 %, and that with all the shapes of virtual objects was 87.71 %. This result shows that the recognition rate was improved by training the classifier using the shape-dependent dataset.
VR环境下情境自适应物体抓取识别
本文提出了一种识别虚拟现实环境中虚拟物体抓取的方法。所提出的方法利用了被抓取虚拟物体的位置和形状是已知的这一事实。相机获取用户抓取虚拟物体的图像,并从该图像中提取手的姿势。用得到的手的姿态来区分是否为抓取动作。为了评估所提出的方法,我们创建了一个专门用于徒手抓取虚拟物体的新数据集。数据集中有三种形状和三种位置的虚拟物体。使用特定形状的虚拟物体数据集训练的分类器识别率为93.18%,使用所有形状的虚拟物体数据集训练的分类器识别率为87.71%。结果表明,使用形状相关数据集训练分类器可以提高识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信