{"title":"CONSTRUCTING GROUP ACTIONS ON QUASI-TREES","authors":"K. Fujiwara","doi":"10.1142/9789813272880_0089","DOIUrl":null,"url":null,"abstract":"A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary hyperbolic groups, CAT(0) groups with rank 1 elements, mapping class groups and the outer automorphism groups of free groups. As an application, we show that mapping class groups act on finite products of Gromov-hyperbolic spaces so that orbit maps are quasi-isometric embeddings. It implies that mapping class groups have finite asymptotic dimension.","PeriodicalId":318252,"journal":{"name":"Proceedings of the International Congress of Mathematicians (ICM 2018)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Congress of Mathematicians (ICM 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813272880_0089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary hyperbolic groups, CAT(0) groups with rank 1 elements, mapping class groups and the outer automorphism groups of free groups. As an application, we show that mapping class groups act on finite products of Gromov-hyperbolic spaces so that orbit maps are quasi-isometric embeddings. It implies that mapping class groups have finite asymptotic dimension.