The Secret Processor Will Go to the Ball: Benchmark Insider-Proof Encrypted Computing

Peter T. Breuer, Jonathan P. Bowen, Esther Palomar, Zhiming Liu
{"title":"The Secret Processor Will Go to the Ball: Benchmark Insider-Proof Encrypted Computing","authors":"Peter T. Breuer, Jonathan P. Bowen, Esther Palomar, Zhiming Liu","doi":"10.1109/EuroSPW.2018.00027","DOIUrl":null,"url":null,"abstract":"‘Encrypted computing’ is an approach to preventing insider attacks by the privileged operator against the unprivileged user on a computing system. It requires a processor that works natively on encrypted data in user mode, and the security barrier that protects the user is hardware-based encryption, not access. We report on progress and practical experience with our superscalar RISC class prototype processor for encrypted computing and supporting software infrastructure. This paper aims to alert the secure hardware community that encrypted computing is possibly practical, as well as theoretically plausible. It has been shown formally impossible for operator mode to read (or write to order) the plaintext form of data originating from or being operated on in the user mode of this class of processor, given that the encryption is independently secure. Now we report standard Dhrystone benchmarks for the prototype, showing performance with AES-128 like a 433MHz classic Pentium (1 GHz base clock), thousands of times faster than other approaches.","PeriodicalId":326280,"journal":{"name":"2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuroSPW.2018.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

‘Encrypted computing’ is an approach to preventing insider attacks by the privileged operator against the unprivileged user on a computing system. It requires a processor that works natively on encrypted data in user mode, and the security barrier that protects the user is hardware-based encryption, not access. We report on progress and practical experience with our superscalar RISC class prototype processor for encrypted computing and supporting software infrastructure. This paper aims to alert the secure hardware community that encrypted computing is possibly practical, as well as theoretically plausible. It has been shown formally impossible for operator mode to read (or write to order) the plaintext form of data originating from or being operated on in the user mode of this class of processor, given that the encryption is independently secure. Now we report standard Dhrystone benchmarks for the prototype, showing performance with AES-128 like a 433MHz classic Pentium (1 GHz base clock), thousands of times faster than other approaches.
秘密处理器将参加舞会:基准防内部加密计算
“加密计算”是一种防止特权操作人员对计算系统上的非特权用户进行内部攻击的方法。它需要一个能够在用户模式下本地处理加密数据的处理器,保护用户的安全屏障是基于硬件的加密,而不是访问。我们报告了我们用于加密计算和支持软件基础设施的标量RISC类原型处理器的进展和实践经验。本文旨在提醒安全硬件社区,加密计算可能是实用的,以及理论上可行的。考虑到加密是独立安全的,操作员模式不可能读取(或按顺序写入)源自此类处理器的用户模式或在此类处理器中操作的明文形式的数据。现在我们报告了原型机的标准Dhrystone基准测试,显示AES-128的性能与433MHz经典奔腾(1 GHz基本时钟)一样,比其他方法快数千倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信