Attention and Cost-Sensitive Graph Neural Network for Imbalanced Node Classification

Chao Ma, Jing An, Xiang-En Bai, Hanqiu Bao
{"title":"Attention and Cost-Sensitive Graph Neural Network for Imbalanced Node Classification","authors":"Chao Ma, Jing An, Xiang-En Bai, Hanqiu Bao","doi":"10.1109/ICNSC55942.2022.10004144","DOIUrl":null,"url":null,"abstract":"Semi-supervised node classification of imbalanced graphs is one of the important tasks in the field of graph neural network (GNN). Most of the current methods focus on how to aggregate feature information from neighbor nodes, but they do not distinguish the importance of minority class and majority class samples in the process of aggregation. To this end, this paper introduces an attention mechanism in the process of aggregating feature information, which flexibly assigns individualized weights to minority and majority class samples. At the same time, we improve the loss function using cost-sensitive techniques to increase the minority class misclassification cost. Finally, we design experiments to verify the effectiveness of the proposed method.","PeriodicalId":230499,"journal":{"name":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC55942.2022.10004144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Semi-supervised node classification of imbalanced graphs is one of the important tasks in the field of graph neural network (GNN). Most of the current methods focus on how to aggregate feature information from neighbor nodes, but they do not distinguish the importance of minority class and majority class samples in the process of aggregation. To this end, this paper introduces an attention mechanism in the process of aggregating feature information, which flexibly assigns individualized weights to minority and majority class samples. At the same time, we improve the loss function using cost-sensitive techniques to increase the minority class misclassification cost. Finally, we design experiments to verify the effectiveness of the proposed method.
不平衡节点分类的注意力与代价敏感图神经网络
非平衡图的半监督节点分类是图神经网络(GNN)领域的重要课题之一。目前的方法大多集中在如何从相邻节点中聚集特征信息,但没有区分少数类和多数类样本在聚集过程中的重要性。为此,本文在特征信息聚合过程中引入了注意机制,灵活地为少数类和多数类样本分配个性化权重。同时,利用代价敏感技术改进损失函数,提高少数类的误分类代价。最后,通过实验验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信