Shape parameter estimation for generalized Gaussian Markov random field models used in MAP image restoration

W. H. Pun, B. Jeffs
{"title":"Shape parameter estimation for generalized Gaussian Markov random field models used in MAP image restoration","authors":"W. H. Pun, B. Jeffs","doi":"10.1109/ACSSC.1995.540942","DOIUrl":null,"url":null,"abstract":"We propose using the generalized Gaussian Markov random field (GGMRF) image model with MAP estimation to solve the problem of restoration for a blurred and noise corrupted image. The restoration algorithm is adapted to specific characteristics of the true image by estimating the GGMRF shape parameter used in computing the MAP estimation. This shape parameter, p, is estimated based on the sample kurtosis of the image. It is shown that higher quality restorations are obtained when the estimated p value is used, rather than some arbitrary choice as other investigators have used.","PeriodicalId":171264,"journal":{"name":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1995.540942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We propose using the generalized Gaussian Markov random field (GGMRF) image model with MAP estimation to solve the problem of restoration for a blurred and noise corrupted image. The restoration algorithm is adapted to specific characteristics of the true image by estimating the GGMRF shape parameter used in computing the MAP estimation. This shape parameter, p, is estimated based on the sample kurtosis of the image. It is shown that higher quality restorations are obtained when the estimated p value is used, rather than some arbitrary choice as other investigators have used.
MAP图像恢复中广义高斯马尔可夫随机场模型的形状参数估计
提出了基于MAP估计的广义高斯马尔可夫随机场(GGMRF)图像模型来解决模糊和噪声损坏图像的恢复问题。该恢复算法通过估计用于计算MAP估计的GGMRF形状参数来适应真实图像的特定特征。该形状参数p是根据图像的样本峰度估计的。结果表明,当使用估计的p值时,而不是像其他研究者使用的一些任意选择,可以获得更高质量的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信