Analysis of pixel level features in recognition of real life dual-handed sign language data set

Himanshu Lilha, D. Shivmurthy
{"title":"Analysis of pixel level features in recognition of real life dual-handed sign language data set","authors":"Himanshu Lilha, D. Shivmurthy","doi":"10.1109/ReTIS.2011.6146876","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the evaluation of various pixel level features for the dual handed sign language data set. Data sets are collected from the real life scenario. We compare the feature extraction methods like Histogram of Orientation Gradient (HOG), Histogram of Boundary Description (HBD) and the Histogram of Edge Frequency (HOEF). The accuracy of HOG and HBD found up to 71.4% and 77.3% whereas the accuracy of HOEF in real life data set is 97.3% and in ideal condition 98.1%.","PeriodicalId":137916,"journal":{"name":"2011 International Conference on Recent Trends in Information Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Recent Trends in Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReTIS.2011.6146876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper demonstrates the evaluation of various pixel level features for the dual handed sign language data set. Data sets are collected from the real life scenario. We compare the feature extraction methods like Histogram of Orientation Gradient (HOG), Histogram of Boundary Description (HBD) and the Histogram of Edge Frequency (HOEF). The accuracy of HOG and HBD found up to 71.4% and 77.3% whereas the accuracy of HOEF in real life data set is 97.3% and in ideal condition 98.1%.
现实生活中双手手语数据集识别的像素级特征分析
本文演示了对双手手语数据集的各种像素级特征的评估。数据集是从现实生活场景中收集的。我们比较了方向梯度直方图(HOG)、边界描述直方图(HBD)和边缘频率直方图(HOEF)等特征提取方法。HOG和HBD的准确率分别为71.4%和77.3%,而HOEF在现实生活数据集的准确率为97.3%,理想状态下的准确率为98.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信