A Feasible Process For Mining Corpus From Web

Chao Wang, Dequan Zheng, T. Zhao, Ji Guo
{"title":"A Feasible Process For Mining Corpus From Web","authors":"Chao Wang, Dequan Zheng, T. Zhao, Ji Guo","doi":"10.1109/EMEIT.2011.6080758","DOIUrl":null,"url":null,"abstract":"Mining bilingual parallel sentence pair from Web data is the most effective way to get large-scale of bilingual corpus. In this paper, we put forward both the set of method and the series of process for extracting parallel sentence pair from nonspecific web date source. considering 1.1 billion page as the web data input, with a sequence of steps we get several sentences pair which has 81% recall and 85% precision, on this basis we bring up a parameter for measure quality of sentence pair. After filter sentence pair by this parameter, we get 850 thousand unique sentence pairs. On filtering by this parameter, the precision increase to 95%, meanwhile the recall only decrease by 1%.","PeriodicalId":216097,"journal":{"name":"Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMEIT.2011.6080758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mining bilingual parallel sentence pair from Web data is the most effective way to get large-scale of bilingual corpus. In this paper, we put forward both the set of method and the series of process for extracting parallel sentence pair from nonspecific web date source. considering 1.1 billion page as the web data input, with a sequence of steps we get several sentences pair which has 81% recall and 85% precision, on this basis we bring up a parameter for measure quality of sentence pair. After filter sentence pair by this parameter, we get 850 thousand unique sentence pairs. On filtering by this parameter, the precision increase to 95%, meanwhile the recall only decrease by 1%.
一种可行的Web语料库挖掘方法
从Web数据中挖掘双语平行句对是获取大规模双语语料库的最有效途径。本文提出了从非特定web数据源中提取并行句对的一组方法和一系列过程。以11亿页的网页数据为输入,通过一系列步骤得到了召回率为81%、准确率为85%的句子对,并在此基础上提出了衡量句子对质量的参数。通过该参数对句子对进行过滤,得到85万个唯一的句子对。采用该参数过滤后,准确率提高到95%,召回率仅下降1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信