Synthesizing Smart Solving Strategy for Symbolic Execution

Zehua Chen, Zhenbang Chen, Ziqi Shuai, Yufeng Zhang, Weiyu Pan
{"title":"Synthesizing Smart Solving Strategy for Symbolic Execution","authors":"Zehua Chen, Zhenbang Chen, Ziqi Shuai, Yufeng Zhang, Weiyu Pan","doi":"10.1145/3324884.3418904","DOIUrl":null,"url":null,"abstract":"Constraint solving is one of the challenges for symbolic execution. Modern SMT solvers allow users to customize the internal solving procedure by solving strategies. In this extended abstract, we report our recent progress in synthesizing a program-specific solving strategy for the symbolic execution of a program. We propose a two-stage procedure for symbolic execution. At the first stage, we synthesize a solving strategy by utilizing deep learning techniques. Then, the strategy will be used in the second stage to improve the performance of constraint solving. The preliminary experimental results indicate the promising of our method.","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3418904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Constraint solving is one of the challenges for symbolic execution. Modern SMT solvers allow users to customize the internal solving procedure by solving strategies. In this extended abstract, we report our recent progress in synthesizing a program-specific solving strategy for the symbolic execution of a program. We propose a two-stage procedure for symbolic execution. At the first stage, we synthesize a solving strategy by utilizing deep learning techniques. Then, the strategy will be used in the second stage to improve the performance of constraint solving. The preliminary experimental results indicate the promising of our method.
符号执行的综合智能求解策略
约束求解是符号执行的挑战之一。现代SMT求解器允许用户通过求解策略定制内部求解程序。在这篇扩展摘要中,我们报告了我们在合成程序符号执行的特定于程序的求解策略方面的最新进展。我们提出了一个两阶段的符号执行过程。在第一阶段,我们利用深度学习技术合成了一个求解策略。然后,在第二阶段将使用该策略来提高约束求解的性能。初步的实验结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信