Diagrammatic Reasoning beyond Clifford+T Quantum Mechanics

E. Jeandel, S. Perdrix, R. Vilmart
{"title":"Diagrammatic Reasoning beyond Clifford+T Quantum Mechanics","authors":"E. Jeandel, S. Perdrix, R. Vilmart","doi":"10.1145/3209108.3209139","DOIUrl":null,"url":null,"abstract":"The ZX-Calculus is a graphical language for diagrammatic reasoning in quantum mechanics and quantum information theory. An axiomatisation has recently been proven to be complete for an approximatively universal fragment of quantum mechanics, the so-called Clifford+T fragment. We focus here on the expressive power of this axiomatisation beyond Clifford+T Quantum mechanics. We consider the full pure qubit quantum mechanics, and mainly prove two results: (i) First, the axiomatisation for Clifford+T quantum mechanics is also complete for all equations involving some kind of linear diagrams. The linearity of the diagrams reflects the phase group structure, an essential feature of the ZX-calculus. In particular all the axioms of the ZX-calculus are involving linear diagrams. (ii) We also show that the axiomatisation for Clifford+T is not complete in general but can be completed by adding a single (non linear) axiom, providing a simpler axiomatisation of the ZX-calculus for pure quantum mechanics than the one recently introduced by Ng&Wang.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

The ZX-Calculus is a graphical language for diagrammatic reasoning in quantum mechanics and quantum information theory. An axiomatisation has recently been proven to be complete for an approximatively universal fragment of quantum mechanics, the so-called Clifford+T fragment. We focus here on the expressive power of this axiomatisation beyond Clifford+T Quantum mechanics. We consider the full pure qubit quantum mechanics, and mainly prove two results: (i) First, the axiomatisation for Clifford+T quantum mechanics is also complete for all equations involving some kind of linear diagrams. The linearity of the diagrams reflects the phase group structure, an essential feature of the ZX-calculus. In particular all the axioms of the ZX-calculus are involving linear diagrams. (ii) We also show that the axiomatisation for Clifford+T is not complete in general but can be completed by adding a single (non linear) axiom, providing a simpler axiomatisation of the ZX-calculus for pure quantum mechanics than the one recently introduced by Ng&Wang.
超越Clifford+T量子力学的图解推理
ZX-Calculus是一种用于量子力学和量子信息论中图解推理的图形语言。一个公理化最近被证明是完整的量子力学的近似普遍片段,所谓的Clifford+T片段。我们在这里关注的是超越Clifford+T量子力学的这种公理化的表达能力。我们考虑全纯量子位量子力学,主要证明了两个结果:(i)首先,Clifford+T量子力学的公理化对于所有涉及某种线性图的方程也是完备的。图的线性反映了相群结构,这是zx微积分的一个基本特征。特别地,所有的zx微积分公理都涉及到线性图。(ii)我们还证明了Clifford+T的公理化一般来说是不完全的,但可以通过添加一个(非线性)公理来完成,从而提供了一个比Ng&Wang最近引入的更简单的纯量子力学zx演算公理化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信