Minimum energy quantized neural networks

Bert Moons, Koen Goetschalckx, Nick Van Berckelaer, M. Verhelst
{"title":"Minimum energy quantized neural networks","authors":"Bert Moons, Koen Goetschalckx, Nick Van Berckelaer, M. Verhelst","doi":"10.1109/ACSSC.2017.8335699","DOIUrl":null,"url":null,"abstract":"This work targets the automated minimum-energy optimization of Quantized Neural Networks (QNNs) — networks using low precision weights and activations. These networks are trained from scratch at an arbitrary fixed point precision. At iso-accuracy, QNNs using fewer bits require deeper and wider network architectures than networks using higher precision operators, while they require less complex arithmetic and less bits per weights. This fundamental trade-off is analyzed and quantified to find the minimum energy QNN for any benchmark and hence optimize energy-efficiency. To this end, the energy consumption of inference is modeled for a generic hardware platform. This allows drawing several conclusions across different benchmarks. First, energy consumption varies orders of magnitude at iso-accuracy depending on the number of bits used in the QNN. Second, in a typical system, BinaryNets or int4 implementations lead to the minimum energy solution, outperforming int8 networks up to 2–10× at iso-accuracy. All code used for QNN training is available from https://github.com/BertMoons/.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

Abstract

This work targets the automated minimum-energy optimization of Quantized Neural Networks (QNNs) — networks using low precision weights and activations. These networks are trained from scratch at an arbitrary fixed point precision. At iso-accuracy, QNNs using fewer bits require deeper and wider network architectures than networks using higher precision operators, while they require less complex arithmetic and less bits per weights. This fundamental trade-off is analyzed and quantified to find the minimum energy QNN for any benchmark and hence optimize energy-efficiency. To this end, the energy consumption of inference is modeled for a generic hardware platform. This allows drawing several conclusions across different benchmarks. First, energy consumption varies orders of magnitude at iso-accuracy depending on the number of bits used in the QNN. Second, in a typical system, BinaryNets or int4 implementations lead to the minimum energy solution, outperforming int8 networks up to 2–10× at iso-accuracy. All code used for QNN training is available from https://github.com/BertMoons/.
最小能量量化神经网络
这项工作的目标是量化神经网络(QNNs)的自动最小能量优化-使用低精度权重和激活的网络。这些网络以任意的定点精度从零开始训练。在等精度下,使用更少比特的qnn比使用更高精度算子的网络需要更深更宽的网络架构,同时它们需要更简单的算法和更少的权重比特。这种基本的权衡被分析和量化,以找到任何基准的最小能量QNN,从而优化能源效率。为此,对通用硬件平台的推理能耗进行了建模。这允许在不同的基准中得出几个结论。首先,能量消耗根据QNN中使用的比特数以等精度变化数量级。其次,在一个典型的系统中,BinaryNets或int4实现导致最小能量解决方案,在等精度上优于int8网络高达2 - 10倍。用于QNN训练的所有代码可从https://github.com/BertMoons/获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信