{"title":"Clustering in Hypergraphs to Minimize Average Edge Service Time","authors":"Ori Rottenstreich, Haim Kaplan, A. Hassidim","doi":"10.1145/3386121","DOIUrl":null,"url":null,"abstract":"We study the problem of clustering the vertices of a weighted hypergraph such that on average the vertices of each edge can be covered by a small number of clusters. This problem has many applications, such as for designing medical tests, clustering files on disk servers, and placing network services on servers. The edges of the hypergraph model groups of items that are likely to be needed together, and the optimization criteria that we use can be interpreted as the average delay (or cost) to serve the items of a typical edge. We describe and analyze algorithms for this problem for the case in which the clusters have to be disjoint and for the case where clusters can overlap. The analysis is often subtle and reveals interesting structure and invariants that one can utilize.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We study the problem of clustering the vertices of a weighted hypergraph such that on average the vertices of each edge can be covered by a small number of clusters. This problem has many applications, such as for designing medical tests, clustering files on disk servers, and placing network services on servers. The edges of the hypergraph model groups of items that are likely to be needed together, and the optimization criteria that we use can be interpreted as the average delay (or cost) to serve the items of a typical edge. We describe and analyze algorithms for this problem for the case in which the clusters have to be disjoint and for the case where clusters can overlap. The analysis is often subtle and reveals interesting structure and invariants that one can utilize.