Data-driven Multiobjective Particle Swarm Optimization based on Data Augmentation Strategy

Yu Zhang, Wang Hu, Yan Qi, Yuxuan Li
{"title":"Data-driven Multiobjective Particle Swarm Optimization based on Data Augmentation Strategy","authors":"Yu Zhang, Wang Hu, Yan Qi, Yuxuan Li","doi":"10.1145/3456415.3457219","DOIUrl":null,"url":null,"abstract":"In some offline data-driven optimization problems, only small data can be gathered from real applications, which may decrease the reliability of surrogate models. To overcome the issues mentioned above, a data augmentation strategy based on generative adversarial networks (GANs) is adopted to improve the performance of data-driven multiobjective particle swarm optimization (DDMOPSO). Besides the fitting information of the original data, the distribution information is also considered to create synthetic data. The synthetic data is utilized to increase the accuracy of surrogate models. Therefore, a novel offline data-driven multiobjective particle swarm optimization based on data augmentation strategy (DDMOPSO-A) is proposed in this paper. The experiment results show that the proposed algorithm is superior to four competitive algorithms on seven benchmark problems.","PeriodicalId":422117,"journal":{"name":"Proceedings of the 2021 9th International Conference on Communications and Broadband Networking","volume":"84 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 9th International Conference on Communications and Broadband Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3456415.3457219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In some offline data-driven optimization problems, only small data can be gathered from real applications, which may decrease the reliability of surrogate models. To overcome the issues mentioned above, a data augmentation strategy based on generative adversarial networks (GANs) is adopted to improve the performance of data-driven multiobjective particle swarm optimization (DDMOPSO). Besides the fitting information of the original data, the distribution information is also considered to create synthetic data. The synthetic data is utilized to increase the accuracy of surrogate models. Therefore, a novel offline data-driven multiobjective particle swarm optimization based on data augmentation strategy (DDMOPSO-A) is proposed in this paper. The experiment results show that the proposed algorithm is superior to four competitive algorithms on seven benchmark problems.
基于数据增强策略的数据驱动多目标粒子群优化
在一些离线数据驱动优化问题中,只能从实际应用中收集到少量数据,这可能会降低代理模型的可靠性。为了克服上述问题,采用基于生成对抗网络(GANs)的数据增强策略来提高数据驱动的多目标粒子群优化(DDMOPSO)的性能。除了考虑原始数据的拟合信息外,还考虑分布信息来创建合成数据。利用合成数据提高代理模型的准确性。为此,本文提出了一种基于数据增强策略的离线数据驱动多目标粒子群优化方法(DDMOPSO-A)。实验结果表明,该算法在7个基准问题上优于4种竞争算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信