Mining shared social media links to support clustering of blog articles

Darko Obradovic, Fernanda S. Pimenta, A. Dengel
{"title":"Mining shared social media links to support clustering of blog articles","authors":"Darko Obradovic, Fernanda S. Pimenta, A. Dengel","doi":"10.1109/CASON.2011.6085940","DOIUrl":null,"url":null,"abstract":"When monitoring blog articles for the tracking of a certain personality or product, the automatic identification of topic clusters is of high interest. Clustering by textual content is a popular method to accomplish this. In this paper we investigate how links between individual blog articles can be used to support this clustering with another dimension of information. Given the existing component structure of these networks, we focus on the extension with links based on shared social media resources. We show that the component structure extended in this way is of very high use for supporting textual clustering algorithms, and may be used for a new type of hybrid clustering algorithms in the future.","PeriodicalId":342597,"journal":{"name":"2011 International Conference on Computational Aspects of Social Networks (CASoN)","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computational Aspects of Social Networks (CASoN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASON.2011.6085940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

When monitoring blog articles for the tracking of a certain personality or product, the automatic identification of topic clusters is of high interest. Clustering by textual content is a popular method to accomplish this. In this paper we investigate how links between individual blog articles can be used to support this clustering with another dimension of information. Given the existing component structure of these networks, we focus on the extension with links based on shared social media resources. We show that the component structure extended in this way is of very high use for supporting textual clustering algorithms, and may be used for a new type of hybrid clustering algorithms in the future.
挖掘共享的社交媒体链接来支持博客文章的集群化
在监控博客文章以跟踪特定的个性或产品时,主题集群的自动识别非常重要。按文本内容聚类是一种常用的方法。在本文中,我们研究了如何使用单个博客文章之间的链接来支持与另一个信息维度的聚类。鉴于这些网络现有的组件结构,我们将重点放在基于共享社交媒体资源的链接扩展上。研究表明,以这种方式扩展的组件结构在支持文本聚类算法方面具有很高的实用性,并可能在未来用于一种新型的混合聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信