Analog implementation for networks of integrate-and-fire neurons with adaptive local connectivity

J. Schreiter, U. Ramacher, A. Heittmann, D. Matolin, R. Schüffny
{"title":"Analog implementation for networks of integrate-and-fire neurons with adaptive local connectivity","authors":"J. Schreiter, U. Ramacher, A. Heittmann, D. Matolin, R. Schüffny","doi":"10.1109/NNSP.2002.1030077","DOIUrl":null,"url":null,"abstract":"An analog VLSI implementation for pulse coupled neural networks of leakage free integrate-and-fire neurons with adaptive connections is presented. Weight adaptation is based on existing adaptation rules for image segmentation. Although both integrate-and-fire neurons and adaptive weights can be implementation only approximately, simulations have shown, that synchronization properties of the original adaptation rules are preserved.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

An analog VLSI implementation for pulse coupled neural networks of leakage free integrate-and-fire neurons with adaptive connections is presented. Weight adaptation is based on existing adaptation rules for image segmentation. Although both integrate-and-fire neurons and adaptive weights can be implementation only approximately, simulations have shown, that synchronization properties of the original adaptation rules are preserved.
具有自适应局部连通性的整合-激发神经元网络的模拟实现
提出了一种具有自适应连接的无泄漏积分-火神经元脉冲耦合神经网络的模拟VLSI实现方法。权重自适应是基于已有的图像分割自适应规则。尽管积分-激活神经元和自适应权值都只能近似地实现,但仿真结果表明,原始自适应规则的同步特性得到了保留。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信