John I. Sahr, Daniel Posada, Noemí Miguélez-Gómez, Dalton C. Korczyk, Kevin Pepin, Justin Parkhurst, Christopher W. Hays, T. Henderson, E. Rojas-Nastrucci
{"title":"Wireless Payload Thermal-Vacuum Testing for Lunar Harsh Environment","authors":"John I. Sahr, Daniel Posada, Noemí Miguélez-Gómez, Dalton C. Korczyk, Kevin Pepin, Justin Parkhurst, Christopher W. Hays, T. Henderson, E. Rojas-Nastrucci","doi":"10.1109/SHaRC51853.2021.9375873","DOIUrl":null,"url":null,"abstract":"Ahstract- The renewed interest in lunar exploration has triggered the development of novel commercial lunar payloads in recent years. As the design paradigm is shifting from multiple-year design and development of payload using customized devices, to rapid design and prototyping using commercial-off-the-shelf (COTS) components, end-to-end testing is essential to ensure success of the mission. Thermal-vacuum (TVAC) testing is one of the key tests performed on the lunar systems. TVAC testing is an experiment to verify the readiness of the hardware and software under the extreme circumstances the payload will experience in the space environment. This paper focuses on the TVAC testing of a hypothetical small wireless lunar sensing payload's communications system, consisting of an electrical power and communications subsystems, on-board computer, and housekeeping and scientific sensors. The experiment follows NASA guidelines and standards to confirm the design requirements and their verification plan. The payload is considered part of a short-duration sensing and telemetry mission in a particular location near-Lunar-surface environment. Therefore, it is designed to withstand the computed thermal and vacuum requirements for the mission conditions: a temperature range from 15° $C$ to 50° $C$ and an atmospheric pressure of $10^{-4} Pa$.","PeriodicalId":188904,"journal":{"name":"2021 IEEE Space Hardware and Radio Conference (SHaRC)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Space Hardware and Radio Conference (SHaRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHaRC51853.2021.9375873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Ahstract- The renewed interest in lunar exploration has triggered the development of novel commercial lunar payloads in recent years. As the design paradigm is shifting from multiple-year design and development of payload using customized devices, to rapid design and prototyping using commercial-off-the-shelf (COTS) components, end-to-end testing is essential to ensure success of the mission. Thermal-vacuum (TVAC) testing is one of the key tests performed on the lunar systems. TVAC testing is an experiment to verify the readiness of the hardware and software under the extreme circumstances the payload will experience in the space environment. This paper focuses on the TVAC testing of a hypothetical small wireless lunar sensing payload's communications system, consisting of an electrical power and communications subsystems, on-board computer, and housekeeping and scientific sensors. The experiment follows NASA guidelines and standards to confirm the design requirements and their verification plan. The payload is considered part of a short-duration sensing and telemetry mission in a particular location near-Lunar-surface environment. Therefore, it is designed to withstand the computed thermal and vacuum requirements for the mission conditions: a temperature range from 15° $C$ to 50° $C$ and an atmospheric pressure of $10^{-4} Pa$.