Fast dynamic quantization algorithm for vector map compression

Minjie Chen, Mantao Xu, P. Fränti
{"title":"Fast dynamic quantization algorithm for vector map compression","authors":"Minjie Chen, Mantao Xu, P. Fränti","doi":"10.1109/ICIP.2010.5651821","DOIUrl":null,"url":null,"abstract":"Vector map compression can be solved by incorporating both data reduction (polygonal approximation) and quantization of the prediction errors, which is the so-called dynamic quantization. This straightforward solution is to calculate all the rate-distortion curves with respect to each of the quantization levels such that the best quantizer is the lower envelope of the set of curves. But computing an entire set of rate-distortion curves is computationally expensive. To solve this problem, we propose a fast algorithm first estimates an optimal Lagrangian parameter λ for each given quantization level l and thus only one rate-distortion curve is achievable for constructing the optimal quantizer of prediction errors. An experimental result demonstrates that proposed algorithm reduces the computational complexity significantly without compromising its rate-distortion performance.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5651821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Vector map compression can be solved by incorporating both data reduction (polygonal approximation) and quantization of the prediction errors, which is the so-called dynamic quantization. This straightforward solution is to calculate all the rate-distortion curves with respect to each of the quantization levels such that the best quantizer is the lower envelope of the set of curves. But computing an entire set of rate-distortion curves is computationally expensive. To solve this problem, we propose a fast algorithm first estimates an optimal Lagrangian parameter λ for each given quantization level l and thus only one rate-distortion curve is achievable for constructing the optimal quantizer of prediction errors. An experimental result demonstrates that proposed algorithm reduces the computational complexity significantly without compromising its rate-distortion performance.
矢量图压缩的快速动态量化算法
矢量图压缩可以通过结合数据约简(多边形近似)和预测误差量化(即所谓的动态量化)来解决。这种直接的解决方案是计算所有的率失真曲线,相对于每个量化水平,使最好的量化是一组曲线的较低的包络线。但是计算一套完整的利率扭曲曲线在计算上是昂贵的。为了解决这一问题,我们提出了一种快速算法,首先对每个给定的量化水平l估计一个最优拉格朗日参数λ,因此只有一条率失真曲线可用于构建预测误差的最优量化器。实验结果表明,该算法在不影响其率失真性能的情况下显著降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信