Palmprint Recognition Using Kernel Spectral Regression Discriminant Analysis and HOG Representation

Wei Jia, Jie Gui, Rongxiang Hu, Ying-Ke Lei
{"title":"Palmprint Recognition Using Kernel Spectral Regression Discriminant Analysis and HOG Representation","authors":"Wei Jia, Jie Gui, Rongxiang Hu, Ying-Ke Lei","doi":"10.1109/ETCHB.2010.5559288","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new appearance based approach for palmprint recognition, which combines Kernel Spectral Regression Discriminant Analysis (KSRDA) method and HOG representation. KSRDA is the kernel version of SRDA which has lower computation complexity than Linear Discriminant Analysis (LDA). Meanwhile, HOG representation isn't sensitive to changes of illumination, and has the robustness against deformations because slight translations and rotations make small histogram value changes. As a result, the proposed approach can achieve promising recognition rate. The results of experiments conducted on Hong Kong Polytechnic University Palmprint Database II and the blue band of Hong Kong Polytechnic University Multispectral Palmprint Database demonstrate the effectiveness of proposed approach.","PeriodicalId":174704,"journal":{"name":"2010 International Workshop on Emerging Techniques and Challenges for Hand-Based Biometrics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Emerging Techniques and Challenges for Hand-Based Biometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCHB.2010.5559288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a new appearance based approach for palmprint recognition, which combines Kernel Spectral Regression Discriminant Analysis (KSRDA) method and HOG representation. KSRDA is the kernel version of SRDA which has lower computation complexity than Linear Discriminant Analysis (LDA). Meanwhile, HOG representation isn't sensitive to changes of illumination, and has the robustness against deformations because slight translations and rotations make small histogram value changes. As a result, the proposed approach can achieve promising recognition rate. The results of experiments conducted on Hong Kong Polytechnic University Palmprint Database II and the blue band of Hong Kong Polytechnic University Multispectral Palmprint Database demonstrate the effectiveness of proposed approach.
基于核谱回归判别分析和HOG表示的掌纹识别
本文提出了一种新的基于外观的掌纹识别方法,该方法将核谱回归判别分析(KSRDA)方法与HOG表示相结合。KSRDA是SRDA的核心版本,具有比线性判别分析(LDA)更低的计算复杂度。同时,HOG表示对光照变化不敏感,轻微的平移和旋转使直方图值变化很小,对变形具有鲁棒性。结果表明,该方法具有良好的识别率。在香港理工大学掌纹数据库II和香港理工大学多光谱掌纹数据库蓝带上的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信