Improving Content Based Video Retrieval Performance by Using Hadoop-MapReduce Model

El Mehdi Saoudi, Abderrahmane Adoui El Ouadrhiri, Othman El Warrak, Said Jai-Andaloussi, Abderrahmane Sekkaki
{"title":"Improving Content Based Video Retrieval Performance by Using Hadoop-MapReduce Model","authors":"El Mehdi Saoudi, Abderrahmane Adoui El Ouadrhiri, Othman El Warrak, Said Jai-Andaloussi, Abderrahmane Sekkaki","doi":"10.23919/FRUCT.2018.8588095","DOIUrl":null,"url":null,"abstract":"In this paper, we present a distributed Content-Based Video Retrieval (CBVR) system based on MapReduce programming model. A CBVR system called bounded Coordinate of Motion Histogram (BCMH) has been implemented as case study by using Hadoop framework. Our work consists of proposing a distributed model to extract videos signatures and compute similarity with the BCMH system based on a set of Mapreduce jobs assigned to multiple nodes of the Hadoop cluster in order to reduce computation time of training process. The proposed approach is tested on HOLLYWOOD2 dataset and the obtained results demonstrate efficiency of the proposed approach.","PeriodicalId":183812,"journal":{"name":"2018 23rd Conference of Open Innovations Association (FRUCT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 23rd Conference of Open Innovations Association (FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FRUCT.2018.8588095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present a distributed Content-Based Video Retrieval (CBVR) system based on MapReduce programming model. A CBVR system called bounded Coordinate of Motion Histogram (BCMH) has been implemented as case study by using Hadoop framework. Our work consists of proposing a distributed model to extract videos signatures and compute similarity with the BCMH system based on a set of Mapreduce jobs assigned to multiple nodes of the Hadoop cluster in order to reduce computation time of training process. The proposed approach is tested on HOLLYWOOD2 dataset and the obtained results demonstrate efficiency of the proposed approach.
利用Hadoop-MapReduce模型改进基于内容的视频检索性能
本文提出了一种基于MapReduce编程模型的分布式基于内容的视频检索(CBVR)系统。本文以一个基于Hadoop框架的运动直方图有界坐标(bounded Coordinate of Motion Histogram, BCMH)的CBVR系统为例进行了研究。为了减少训练过程的计算时间,我们提出了一种基于分配给Hadoop集群多个节点的Mapreduce任务集的分布式模型来提取视频签名并计算与BCMH系统的相似度。在HOLLYWOOD2数据集上进行了测试,结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信